Xreferat.com » Рефераты по физике » Магнитные наносистемы

Магнитные наносистемы

Содержание


Введение

1. Предмет, цели и основные направления в нанотехнологии

2. Сканирующая туннельная микроскопия

3. Наноматериалы

3.1 Фуллерены

3.2 Фуллериты

3.3 Углеродные нанотрубки

3.4 Сверхпрочные материалы

3.5 Высокопроводящие материалы

4. Нанокластеры

4.1 Формирование нанокластерной системы оксидов железа. Термодинамическая модель зарождения и роста кластеров

4.2 Магнитные свойства наносистемы оксидов железа

5. Наноустройства

5.1 Молекулярные шестерни и насосы

5.2 Алмазная память для компьютеров

5.3 Ассемблеры и дизассемблеры

5.4 Медицинский наноробот

Заключение

Список использованной литературы


Введение


Развитие цивилизации неразрывно связано с совершенствованием технологий получения и использования материалов. На этом пути было несколько качественных скачков: бронза, сталь, полимеры, композиты... Сегодня наступил следующий этап в области материаловедения, обусловленный накоплением знаний об определяющем влиянии наноструктуры на свойства материалов.

Перед материаловедением наносистем стоит целый комплекс научно-технических проблем, решение которых должно быть направлено не только на изучение масштабного фактора (уменьшение величины частиц, элементов или структур), но и на исследование принципиально новых явлений, присущих наномасштабу.

Развитие технологий, связанных с исследованием, созданием и использованием наноматериалов, в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности – в электронике, информатике, материаловедении, энергетике, машиностроении, биологии, медицине, сельском хозяйстве, экологии.

Нанотехнологии рассматриваются ведущими странами как рычаг для приобретения мирового экономического, финансового, политического и военного господства. Развивающиеся страны рассматривают государственную поддержку развития нанотехнологий как наиболее эффективный способ подъема своего промышленного производства и вхождения в мировой рынок с конкурентоспособной продукцией широкого применения. Всеобщий интерес к развитию нанотехнологий подтверждается принятием в 35 странах национальных программ по развитию этого перспективного научно-технического направления, а также объемами выделяемых бюджетных средств. По данным отчета "Lux Research" (2004), в мире на развитие нанотехнологий только по линии правительств в 2003 году было выделено 3,5 млрд долл., а в 2004 году – уже 4,6 миллиарда. Из них по 1,6 млрд долл. (по 35 %) выделено правительствами США и азиатских стран, еще 1,3 млрд долл. – странами ЕС [5].

Основным объектом исследований в этих странах является целый комплекс наноматериалов конструкционного и функционального классов, наноматериалов электронной техники, биотехнологии и медицины и т.д.

Например, в США приоритетными направлениями развития наноматериалов в рамках Национальной программы "Нанотехнологическая инициатива" являются нанокатализаторы, тонкая конструкционная керамика, высокопрочные сплавы, магнитные наносистемы, материалы с особыми электрофизическими свойствами, наноструктурированные покрытия и углеродные наноматериалы. В странах ЕС (Германия, Великобритания, Италия, Швеция, Швейцария) – нанокатализаторы, полимерные и металлополимерные нанокомпозиты, жаропрочные сплавы, сплавы сверхбыстрого затвердевания. В Японии – конструкционная тонкая керамика, нанокомпозиты, углеродные и магнитные наноматериалы.

К научным и прикладным разработкам в области нанотехнологий подключены все ведущие университеты мира. За последние годы создано свыше 1600 нанотехнологических компаний и научных центров, и число их удваивается каждые 1,5–2 года [5].

Анализ приоритетных направлений развития нанотехнологий и наноматериалов в РФ показывает наличие определенной диспропорции в направлениях развития нанопроизводства в ущерб фундаментальным исследованиям, совершенствованию приборной базы и метрологического обеспечения, созданию наноматериалов. Начавшийся в России этап нанопроизводства на сегодняшний день не обеспечен, во-первых, достаточным уровнем фундаментальных знаний о свойствах наноматериалов и наносистем, а также управлении механизмами их получения, и, во-вторых, технологической и измерительной базой. Устранение этой диспропорции и преодоление прогрессирующего отставания России в области наноматериалов возможно прежде всего за счет перехода к скоординированной государственной политике по этой проблеме и создания специализированных научных центров, способных использовать существующие научный потенциал и значительный задел, имеющийся в области наноматериалов. Реальная база для решения подобных задач – Северо-Западный регион РФ, где сосредоточен уникальный творческий потенциал государственных научных центров, институтов РАН и ведущих университетов.

21 мая 2006 года президент России утвердил "Приоритетные направления развития науки, технологий и техники РФ", к числу которых принадлежит и "Индустрия наносистем и материалы". В рамках этого направления реализуется сразу несколько критически важных технологий, в том числе:

  • нанотехнологии и наноматериалы;

  • технологии водородной энергетики;

  • технология создания и обработки кристаллических материалов со специальными свойствами;

  • технологии создания композиционных и керамических материалов;

  • технологии создания биосовместимых материалов;

  • технологии экологически безопасной разработки месторождений и добычи полезных ресурсов;

  • технологии противодействия терроризму;

  • базовые и критические военные, специальные и промышленные технологии;

  • технологии атомной энергетики с замкнутым топливным циклом [5].

Промышленное освоение конструкционных и функциональных материалов на основе наноматериалов и нанотехнологий создаст реальный экономический эффект за счет создания новых конкурентоспособных изделий в реальном секторе экономики и выхода этих изделий на отечественный и мировой рынки. Качественно новые эксплуатационные и потребительские свойства таких изделий позволяют достичь увеличения безаварийного срока службы деталей и устройств, снижения расходов на замену вышедшего из строя оборудования и уменьшения сроков простоя оборудования, расширения области применения наноматериалов. Особого эффекта следует ожидать при создании новых видов вооружений и специальной техники.

Будущее функциональных и конструкционных наноматериалов – реально и перспективно. Но очень важно уже сегодня начать эффективно реализовывать имеющиеся у нас заделы, иначе завтра это сделают другие.


1. Предмет, цели и основные направления в нанотехнологии


Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений [1]:

  • Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

  • Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.

  • Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

  • Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

  • Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

  • Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

  • Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

  • Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

  • Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.


2. Сканирующая туннельная микроскопия


Значительную роль в неудержимом исследовании наномира сыграли, по крайней мере, два события [1]:

- создание сканирующего туннельного микроскопа (G. Ben-nig, G. Rohrer, 1982 г.) и сканирующего атомно-силового микроскопа (G. Bennig, К. Kuatt, К. Gerber, 1986 г.), (Нобелевская премия 1992 г.);

- открытие новой формы существования углерода в природе - фуллеренов (Н. Kroto, J. Health, S. O'Brien, R. Curl, R. Smal-ley, 1985 r.), (Нобелевская премия 1996 г.).

Новые микроскопы позволили наблюдать атомно-молекулярную структуру поверхности монокристаллов в нанометровом диапазоне размеров. Наилучшее пространственное разрешение приборов составляет сотую долю нанометра по нормали к поверхности. Действие сканирующего туннельного микроскопа основано на туннелировании электронов через вакуумный барьер. Высокая разрешающая способность обусловлена тем, что туннельный ток изменяется на три порядка при изменении ширины барьера на размеры атома. Теория квантового эффекта туннелирования заложена Г.А. Гамовым в 1928 г. в работах по a-распаду [1].

С помощью различных сканирующих микроскопов в настоящее время наблюдают за атомной структурой поверхностей монокристаллов металлов, полупроводников, высокотемпературных сверхпроводников, органических молекул, биологических объектов. На рис. 1 показана реконструированная поверхность нижней террасы грани (100) монокристалла кремния. Серые кружки являются образами атомов кремния. Темные области являются локальными нанометровыми дефектами.


Рис. 1. Si (100)


На рис. 2 приведена атомная структура чистой поверхности грани (110) серебра (левая рамка) и той же поверхности, покрытой атомами кислорода (правая рамка). Оказалось, что кислород адсорбируется не хаотично, а образует достаточно длинные цепочки вдоль определенного кристаллографического направления. Наличие сдвоенных и одинарных цепочек свидетельствует о двух формах кислорода.


Рис. 2: а - Ag (100); b - (Ag-O-Ag) /Ag(110)


Эти формы играют важную роль в селективном окислении углеводородов, например этилена. На рис. 3 можно видеть наноструктуру высокотемпературного сверхпроводника Bi2Sr2CaCu2O2.


Рис. 3. Bi2Sr2CaCu2O2


В левой рамке рис. 4 отчетливо видны кольца молекул бензола (С6Н6). В правой рамке показаны СН2 -цепочки полиэтилена.


Рис. 4: а - С6Н6; b - СН2-СН2


Новые микроскопы полезны не только при изучении атомно-молекулярной структуры вещества. Они оказались пригодными для конструирования наноструктур. С помощью определенных движений острием микроскопа удается создавать атомные структуры. На рис, 5 представлены этапы создания надписи "IBM" из отдельных атомов ксенона на грани (110) монокристалла никеля. Движения острия при создании наноструктур из отдельных атомов напоминают приемы хоккеиста при продвижении шайбы клюшкой. Представляет интерес создание компьютерных алгоритмов, устанавливающих нетривиальную связь между движениями острия и перемещениями манипулируемых атомов на основе соответствующих математических моделей. Модели и алгоритмы необходимы для разработки автоматических "сборщиков" наноконструкций [7].


Рис. 5. Xe/Ni (110)


3. Наноматериалы


3.1 Фуллерены


Фуллерены как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли. Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С60. Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч. В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства [7].


3.2 Фуллериты


Молекулы С60 , в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями. В этом кристалле имеются октаэдрические и тетраэдрические полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60. Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллеритов проводится, в частности, в Институте им. Макса Планка в Штутгарте. Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства. Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений.


3.3 Углеродные нанотрубки


Из углерода можно получить молекулы с гигантским числом атомов. Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон (рис. 7).


Рис. 7. Нехиральные нанотрубки.


На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из атомов углерода, в трехмерном пространстве. Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности (m, n)3 . Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну.

Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве (рис. 8).


Рис. 8. Изогнутая трубка.


Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки. Для производства нанотрубок используются специальные катализаторы[1].


3.4 Сверхпрочные материалы


Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра.


3.5 Высокопроводящие материалы


Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве[7].


4. Нанокластеры


К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn4O(BDC)3(DMF)8(C6H5Cl)4. Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn12O12(CH3COO)16(H2O)4 [2]. Эта изящная конструкция состоит из четырех ионов Мn4+ со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn3+ со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn4+ и Мn3+ приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn12 друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров. Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса. Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр.

В последнее десятилетие развитие экспериментальных методов получения и изучения свойств нанокластеров и наноструктур привело к значительному прогрессу в этой области и созданию направления исследования физикохимии нанокластеров и нанокластерных систем.

Для синтеза нанокластеров и наноструктур применялись как традиционные методы химии твердого тела и твердотельные химические реакции, так и специальные методы матричного наноструктурирования с образованием кластеров в микропорах с помощью химических реакций. Методы второй группы позволяют переходить от изолированных (матричная изоляция) к взаимодействующим кластерам. В круг вопросов изучения нанокластеров и наносистем входили атомная нанокластерная динамика, магнитные свойства и магнитные фазовые переходы, каталитические свойства. При этом использовались теоретические методы: термодинамический подход к описанию магнитных фазовых переходов в наносистемах, учитывающий поверхностную энергию кластеров и межкластерные взаимодействия, и математическая модель нуклеации, в ходе твердотельной реакции учитывающая термодинамические аспекты зародышеобразования и роста кластеров. Методическую базу экспериментальных исследований составляли метод рэлеевского рассеяния мессбауэровского излучения для характеристики динамических свойств наносистем, методы мессбауэровской спектроскопии для определения размера кластера, методы мессбауэровской спектроскопии для исследования магнитных фазовых переходов и определения критических размеров кластеров, при которых происходит скачкообразное изменение магнитных свойств кластера, метод зонда для исследования ограниченной диффузии кластера в поре, позволяющий оценить потенциалы движения кластера, методы каталитического тестирования (на основе определения активности и селективности катализатора) свойств поверхности и объема нанометрических слоистых оксидов допированных ионами переходных металлов. В качестве объектов синтеза и исследования были выбраны нанокластеры и наносистемы на основе оксидов железа, а также полимерные нанокластерные системы, которые интересны не только в плане изучения и моделирования новых свойств, связанных с размерными эффектами и межкластерными взаимодействиями, но, что крайне важно, перспективны для создания новых магнитных материалов и катализаторов[2].


4.1 Формирование нанокластерной системы оксидов железа. Термодинамическая модель зарождения и роста кластеров


Эффективный метод синтеза наносистем из твердотельных железооксидных кластеров основан на термическом разложении оксалата железа. Процесс разложения при температуре выше некоторой критической точки начинается с формирования активной реакционной среды, в которой происходит зарождение нанокластеров оксида железа. Этот процесс формирования кластеров можно сравнить с процессом образования зародышей в растворе или расплаве, заполняющем ограниченный объем. Ограничение имеет место, когда кластер образуется в замкнутой поре конечного объема или в результате диффузионного ограничения, которое не позволяет возмущению концентрации маточной среды, вызванному изменением размера кластера, продвинуться за время нуклеации дальше, чем на расстояние ? где D – коэффициент диффузии. Именно это расстояние определяет размер окружающей кластер ячейки, за пределы которой компоненты маточной среды во время нуклеации проникнуть не могут. Для одного кластера в системе неконтактирующих наночастиц зависимость свободной энергии Гиббса от радиуса кластера описывается формулой


(1)


где - плотность поверхностной энергии кластера, - плотность вещества в кластере, - изменение химического потенциала при переходе одного нуклеирующего атома железа из маточной среды в кластер. Если кластер и окружающая среда содержат всего N атомов, из которых - атомы железа и из них n атомов входит в состав кластера, то при


(2)


где - измеренное в единицах kТ изменение стандартного химического потенциала при переходе одного атома железа из среды в структуру кластера.

При зарождении кластер не контактирует с другими кластерами. Запишем выражения для площади поверхности и объема изолированного кластера и , тогда уравнение (1) с учетом (2) можно представить следующим образом:


(3)


Функция имеет максимум в точке ( - критический радиус зародышей при нуклеации), и минимум в точке .

Выражение (3) характеризует зарождение и рост кластера в системе неконтактирующих наночастиц.

Дальнейший рост кластеров приводит к образованию контактов и спеканию системы. Если на этой стадии расстояние между центрами кластеров равно, то выражения для площади поверхности и объема кластера в контакте можно записать так:



где к – число контактирующих с кластером соседей.

Изменение свободной энергии Гиббса на стадии спекания составляет:


(4)


Для примера на рис.1 представлена зависимость для . Первый минимум в точке соответствует исходному состоянию маточной среды. Второй минимум в точке отвечает первому устойчивому состоянию – равновесному состоянию образовавшихся, но не контактирующих кластеров. Третий минимум соответствует системе кластеров имеющих к контактирующих соседних частиц, подвергаемых спеканию при условии . Соответственно первый максимум при представляет

собой потенциальный барьер нуклеации, второй - потенциальный барьер стадии спекания.



Рис.(2) демонстрирует вид потенциального барьера процесса спекания для к =6 и различных значений . В плотно заселенной кластерами системе, при , спекание

происходит без барьера. В менее плотно заселенной системе, при , процесс перехода к спеканию осуществляется через потенциальный барьер, а в еще менее плотно заселенной системе, при , спекание вообще не происходит.



На кривых дифференциального термического анализа и дифференциальной термической гравиметрии для процесса термического разложения оксалата железа на воздухе обнаруживаются два минимума: при и при . При выделяются ,, и начинает формироваться подвижная среда, в которой зарождаются и растут кластеры оксида железа. Второй минимум при , по-видимому связан с дальнейшим удалением из оксалата и , и началом спекания кластеров оксида железа.

Размер кластеров увеличивается с повышением от до . Его оценивали по величине удельной поверхности (по методу БЭТ), а также из данных рентгеноструктурного анализа атомно-силовой микроскопии и мессбауэровской спектроскопии.

Согласно зависимости на рис. (1), докритическая область размеров соответствует стадии флуктуационного зарождения кластеров. В области укрупнение кластеров сопровождается уменьшением свободной энергии, процесс протекает спонтанно и заканчивается образованием устойчивых кластеров размером , объединенных в систему слабовзаимодействующих неконтактирующих кластеров (система 1).

При дальнейшем повышении температуры создаются условия для массового образования контактов между кластерами () и начала спекания, в результате которого образуется система сильно взаимодействующих (спекшихся) кластеров размером (система 2). Значения и определяются условиями синтеза. Поэтому результат твердотельной топохимической реакции зависит от рабочей температуры продолжительности спекания и предыстории образца.


4.2 Магнитные свойства наносистемы оксидов железа


Изменение межкластерного взаимодействия от "слабого" к "сильному" приводит к изменению магнитных свойств наносистемы. Эти изменения исследовались методом мессбауэровской спектроскопии. Для системы 1 (изолированные кластеры) характерно явление суперпарамагнетизма, проявляющегося в виде тепловых флуктуаций магнитного момента кластера как целого, что приводит к размыванию магнитной сверхтонкой структуры спектра (рис. 3а,б). С момента образования системы 2 (взаимодействующие кластеры) появляется достаточно четко выраженная магнитная сверхтонкая структура с узким центральным парамагнитным дублетом (рис. 3в, г). Такой же эффект наблюдался ранее для нанокластеров ферригидрита, изолированных в порах полисорба, а также в кластерах и и в ядре железосодержащих белков ферритина и гемосидерина. Наблюдавшийся спектр мы объясняем как результат наличия в системе нанокластеров магнитного фазового перехода первого рода, при котором намагниченность или магнитный порядок изменяются скачком. Скачкообразный переход может наблюдаться при изменении температуры в некоторой критической точке , а также при изменении размера кластера, когда осуществляется переход через критическое значение радиуса . Скачкообразные переходы в наносистеме, обусловленные сильным межкластерным взаимодействием, давлением и деформацией, наиболее полно наблюдаются для системы 2, состоящей из крупных, спекшихся кластеров (20-50 нм) и . Отметим, что по данным рентгеноструктурного анализа обладает ромбоэдрической структурой, характерной для корунда, а - кубической структурой шпинели.

Мессбауэровские спектры наносистемы и (рис. 4) свидетельствуют о наличии в ней скачкообразных магнитных переходов между магнитоупорядоченным состоянием с характерной сверхтонкой структурой и парамагнитным состоянием, к которому отнесен центральный дублет.



Эти магнитные переходы происходят при температурах , которые ниже критических температур , характерных для массивных образцов и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: