Xreferat.com » Рефераты по физике » Квантово-механічна теорія будови речовини

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Квантово-механічна теорія будови речовини

Вступ


Квантово-механічна теорія виникла на початку ХХ ст., коли було встановлено, що атом подільний, і за елементарні частинки було прийнято електрон і ядро. Зараз вважається, що межею поділу речовини є елементарні частки: електрони, протони, нейрони і інші.

Атомами називаються найбільш прості електронейтральні системи, які складаються з елементарних частинок. Завдяки сучасним дослідженням відкрито понад 200 різних елементарних частинок. Атом хімічного елементу є носієм його хімічних властивостей. Він складається з ядра, яке включає протони і нейтрони, і електронів, що розподіляються навколо ядра. Атоми бувають стійкими і радіоактивними, які з часом перетворюються в інші атоми в результаті змін, що проходять у ядрі. Число електронів в атомі дорівнює заряду ядра. При видаленні з атома одного або декількох електронів утворюється позитивно заряджений іон, а при приєднанні до атома електрону утворюється негативно заряджений іон. Хімічний елемент – це сукупність атомів з одинаковим зарядом ядра. Порядковий номер елементу в Періодичниій системі дорівнює заряду ядра атома елементу.


Розміри та маси атомів


Число Авогадро NA показує число молекул в 1 моль будь-якої індивідуальної речовини і не залежить від природи речовини і її агрегатного стану. NA = 6,02296 · 1023 молекул в 1 моль речовини:


NA = Квантово-механічна теорія будови речовини = 6,02296 · 1023 часток


Якщо два атоми, що утворюють молекулу, одинакові (наприклад, Н2, Сl), то половину міжатомної віддалі, на якій вони знаходяться в молекулі, приймають за радіус атома. Для наближеної оцінки радіуса атома можна скористатись питомою вагою простих речовин. Нехай, наприклад, потрібно визначити радіус атома міді. Металева мідь має густину рівну 8,9 г/см3, атомна маса міді рівна 63,5 г/моль. Тоді можна визначити число атомів міді в 1 см3:


NCu = Квантово-механічна теорія будови речовини · 6,022 · 1023 = 0,85 · 1023


Об’єм, що припадає на один атом міді, рівний оберненому значенню цієї величини:


Квантово-механічна теорія будови речовини = ≈10–23


Приймаючи, що цей об’єм відповідає кулі радіусом r, знаходимо:


Квантово-механічна теорія будови речовиниpr3 = 10–23;

r3 = Квантово-механічна теорія будови речовини = 0,239 · 1023; Квантово-механічна теорія будови речовини 1,3 · 10–8 см


В дійсності радіус атома міді визначений точними методами (рентгеноструктурний аналіз) рівний 1,28 · 10–8 см. Це свідчить про те, що розміри атомів мають порядок ~10–8 см (1Е). В теперішній час в атомній фізиці користуються нанометром (1 нм = 10–9 м = 10Е).

Якщо атом, взаємодіючи з іншими атомами, втрачає або приєднує електрони, то його радіус відповідно може зменшуватись або зростати.

Для розрахунку середньої маси атомів або молекул в грамах необхідно масу 1 моля атомів даного елемента, або молярну масу речовини поділити на число Авогадро. Наприклад, для визначення маси молекули азоту (N2) маємо: 28,0134 : 6,02 · 1023 = 4,653 · 10–23 г; маса молекули (атома) гелію (Не): 4,0023 : 6,02 · 1023 = 4,649 · 10–24 г; маса атома хлору (Сl): 35,453 : 6,02 · 1023 = 5,889 · 10–23 г.

Молярну масу газоподібної речовини можна визначити за відносною густиною газу (D) – безрозмірна величина, яка показує, у скільки разів густина газу більша або менша густини стандартного газу при тих же умовах і в тому ж об’ємі. Молярна маса газу рівна його густині по відношенню до іншого газу помноженому на молярну масу другого (стандартного) газу. Наприклад:


М = Квантово-механічна теорія будови речовини· Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини· 2,016


Молярну масу газоподібної речовини можна визначити виходячи з молярного об’єму газу (22,414 л/моль), знаючи масу і об’єм газу при н.у:


М = Квантово-механічна теорія будови речовини

Якщо відома молекулярна маса простих газоподібних речовин (Н2, Cl2, O2, N2), то враховуючи двохатомний склад їх молекул можна безпосередньо визначити атомну масу хімічних елементів:


Аr = Квантово-механічна теорія будови речовини Mr.


Атомну масу елементів можна визначити кількома методами:

1. За правилом П. Дюлонге і А. Пилс (1819 р.). Добуток атомної маси на питому теплоємність простих речовин у твердому стані приблизно рівний 26 Дж/моль·К.

2. Метод Каніцаро (1865 р.). Спочатку по густині пару (газу) визначали молекулярні маси можливо більшої кількості газоподібних або летких сполук даного елемента. Потім за результатами їх аналізу визначають, скільки одиниць маси припадає на долю цього елемента в молекулярній масі кожної із взятих сполук. Найменше з одержаних чисел приймали за атомну масу. Наприклад: візьмемо чотири газоподібні речовини з вмістом карбону:


СН4, С2Н6, С3Н8, СО.


1. Визначимо молярні маси газів: 16 30 44 28.

2. Визначимо масову густину карбону у молекулах газоподібних речовин (%): 78 80 81,82 42,86.

3. Визначимо масу карбону в усіх сполуках: 12 24 36 12.

4. Найменше значення маси елементу приймаємо за атомну масу


№ п/п Формула сполуки М, г/моль ω (с), % m (c)
1. CH4 16 75 12
2. C2H6 30 80 24
3. C3H8 44 81,82 36
4. CO 28 42,86 12

3. Використання явища ізоморфізма. Ізоморфізм – це явище існування різних речовин з одинаковою кристалічною структурою. Е. Митгерлих (1819 р.) запропонував правило ізоморфізма: речовини, що утворюють ізоморфні кристали, мають близькі хімічні формули (наприклад, MnCO3 і СаСО3).

4. По місцю елемента в періодичній системі Д. Т. Менделеєва.

5. Метод мас-спектрометрії. Іонізовані атоми і молекули речовин розділяють в електричних і магнітних полях по відношенню заряда іону до його маси (ne/M) і роздільно регіструють. На фотопластинці одержують зображення мас-спектра, в якому кожній плямі, що утворюється при ударі іона, відповідає певне значення ne/M. Положення плям на плівці дозволяє судити про масу іонів (атомів).

Атомну масу елементів при наявності ізотопів вираховують як середнє значення атомних мас їх окремих ізотопів. Наприклад, хлор складається з двох ізотопів, маси атомів яких відповідно рівні 34, 940; 36, 961 і вміст кожного із них (масові частки, %) 75, 53 та 24, 47. Тоді:


Мr(Сl) = Квантово-механічна теорія будови речовини= 35,453


Будова атома


До кінця ХІХ ст. атом вважали неподільним. Але завдяки дослідженням цілого ряду вчених було встановлено, що атом подільний і є складною системою. Найважливішими з цих досліджень стали відкриття катодного випромінювання та радіоактивності.

Катодне випромінювання утворюється у вакуумованій скляній трубці, в яку впаяні два електроди – катод і анод. При підключенні катоду і аноду до джерела струму високої напруги катод випускає невидиме для ока проміння, яке викликає люмінесценцію (світіння) розрідженого газу. В зовнішньому електричному полі це проміння відхиляється в бік позитивного полюсу, що показувало, що це проміння є потоком негативно заряджених часток (В. Крус, 1880 р.).

Радіоактивність відкрита А. Бекерелем у 1896 році. Вивчаючи фосфоризацію він помітив, що сіль K2ClO2(SO4)2 · 2H2O діє на фотопластинку без попереднього освітлення. У 1898 р. М. Складовська-Кюрі та її чоловік П. Кюрі виявили в урановій руді ще два елементи, що діють на фотоплівку – полоній (Польша) і радій (промінь).

Здатність деяких елементів випромінювати невидиме для ока проміння, яке спричиняє почорніння фотоплівок, проходить через речовини, іонізує повітря називається радіоактивністю, а відповідні елементи радіоактивними – це самовільний розпад атомів радіоактивних елементів. У 1899 р. Е. Резерфорд встановив, що воно неоднорідне. Під дією магнітного поля радіоактивне випромінювання розщеплюється на три пучки: α – позитивно заряджені частки значної маси (у 1902 р. Резерфорд встановив: α → Квантово-механічна теорія будови речовини – ядро Не); β – негативно заряджені частки молекулярної маси (Квантово-механічна теорія будови речовини); γ – не несе заряду і не відхиляється в магнітному полі.


Заряд і маса електрону


Термін ”електрон” був введений в науку в 1891 р. Стопеєм. Він означав одиничний заряд, що входить до складу атома. Заряд електрона можна визначити на основі закону Фарадея (електроліз): один моль іонів (6,02 · 1023) часток при пропусканні елетричного струму через розчин переносить електричний заряд рівний числу Фарадея (F): F = 96485 кул. Тоді:


Квантово-механічна теорія будови речовини = 1,602 · 10–19 кул


Для визначення маси електрону використовують експериментально встановлену величину – відношення заряду електрона до його маси: е/me = 5,273 · 1017 ел.ст.од/г; е = 4,77 · 10 ел.ст.од; тоді:


me = Квантово-механічна теорія будови речовини0,9109 · 10–27 г


Якщо порівняти масу електрону з масою найлегшого елементу гідрогену


me/ mн = Квантово-механічна теорія будови речовини


то виявляється, що вона ≈1840 раз менша. Тому можна сказати, що маса атома сконцентрована в його ядрі.

У 1886 році М. Гольдштейн відкрив додатньо заряджені частки, у яких заряд був рівний заряду електрона, але протилежний за знаком, а маса часток співпадала з масою атома водню. Ці частки були названі протонами.

Рентгенівське випромінювання. Закон Мозлі. 1895 р.

В. К. Рентген відкрив рентгенівське випромінювання. Рентгенівське випромінювання виникає внаслідок зіткнення електронів з атомами металевої пластинки. Вивчення природи рентгенівського проміння показало, що воно відхиляється в магнітному і електричному полях і є електромагнітним випромінюванням з малою довжиною хвиль (0,06–20 Е), Квантово-механічна теорія будови речовини від катоду до аноду в рентгенівській трубці = 104 – 105 км/сек.

Рентгенівський спектр складається з неперервного спектру, який не залежить від матеріалу аноду і лінійного (характеристичного рентгенівського спектру) не залежить від матеріалу аноду.

Вивчаючи характеристичні рентгенівські спектри різних хімічних елементів Г. Мозлі встановив, що довжини хвиль для однотипних ліній відповідних серій (наприклад, Кα) змінюються закономірно від положення елементів в періодичній системі. ”Лінії” кожної серії спектра при збільшенні порядкового номера елемента зміщуються в бік менших довжин хвиль. У 1913 р. на основі своїх експериментальних даних Г. Мозлі сформулював закон, за яким корінь квадратний з частоти з частоти


Квантово-механічна теорія будови речовини


певних ліній одинакових серій характеристичного рентгенівського спектра прямо пропорційний порядковому номеру елемента


Квантово-механічна теорія будови речовини


(a і b – сталі величині, які залежать від лінії спектра і серії; λ – довжина хвилі власного випромінювання елемента з порядковим номером z). Цей закон давав змогу визначити точні значення порядкових номерів для елементів за діаграмою


Квантово-механічна теорія будови речовини


Чедвік (1920 р.) експериментально визначив заряди ядер ряду елементів і встановив, що у всіх випадках вони відповідають значенню z у формулі Мозлі.

Для всіх атомів, за винятком гідрогену, маси атомів у 2–2,5 раз перевищує заряди ядер і тому було зрозуміло, що до складу атома входить ще якісь елементарні частки. Дослідження ядерної реакції між α-частинками і ядрами берилію привели до відкриття нейтрону – частка, маса якої рівна масі протона, а заряд рівний нулю.

Відкриття нейтрона стало основою для створення протонно-нейтронної будови ядра.

В 1932 році була відкрита ще одна частка – позитрон (додатній електрон).

Вважається, що протон і нейтрон – це лише різний стан одної і тої ж частки названої нуклоном. Перехід протона у нейтрон супроводиться виділенням позитрона, а перехід нейтрона у протон – виділенням електрона.

Вслід за позитроном була відкрита ще мікрочастка. Ця частка, що немає заряду, була названа нейтрино. Нейтрино має масу спокою рівною нулю і володіє великою проникністю. Вся маса нейтрино зв’язана з його рухом.


Моделі будови атома. Атомні спектри. Теорія Бора


Катодне проміння і радіоактивність показало, що до складу атомів входять електрони. Оскільки атоми електронейтральні, то вони мають містити стільки позитивних ядер скільки і негативних.

Перша модель будови атома запропонована в 1903 р. Дж. Томсоном – кулька заповнена достатньо і негативно зарядженими частками, причому електрони в атомі розміщуються пошарово, а хімічні властивості елементів визначаються зовнішнім шаром електронів.

Для більш точного визначення внутрішньої будови атома Е. Резерфорд провів серію дослідів з α-частинками. α-частинки направлялись на металеві пластинки. Одна частинка на 10 000 відкидалась у вихідне положення – лише при зіткненні із значно більшим позитивним ядром.

У 1911 р. Е. Резерфорд запропонував планетарну модель будови атома в центрі атома міститься позитивно заряджене ядро, маса якого практичо дорівнювала масі атома; навколо ядра на орбіталях рухаються електрони; між ядром і електронами взаємодіють електростатичні сили (кулонівські) зрівноважені відцентровою силою, що виникає внаслідок руху

Квантово-механічна теорія будови речовини


де m – маса ē; е – заряд ē; v – швидкість руху ē; r – радіус орбіталі.

Діаметр атома складає ~10–8 см, а діаметр ядра ~10–13– 10–12см.

Результати обчислень показали, що заряд ядра рівний порядковому номеру елемента в періодичній системі.

Відомо, якщо сонячний промінь пропускати крізь кварцову призму, то він розкладається і на екрані, поставленому за призмою, виникає кольорова смуга, яка містить усі кольори райдуги. Це пояснюється тим, що білий промінь складається з електромагнітних хвиль різної довжини, які при проходженні через призму заломлюються нею неодинаково і потрапляють на різні ділянки екрану. Такий спектр називається суцільним.

Світло, яке випромінюється розжареним газом або парою складається з електромагнітних хвиль певної довжини. Тому замість суцільної смуги на екрані виникає ряд окремих кольорових ліній, розділених темними проміжками. Так, наприклад, у видимій частині спектра водню міститься п’ять ліній: червона, зелена, синя і дві фіолетові. Спектр калію складається з трьох ліній – дві червоні і одна фіолетова. Такі спектри називаються лінійчатими. Кожному хімічному елементу відповідає свій атомний спектр, який відрізняється від спектрів інших елементів. Модель атома Резерфорда не могла пояснити лінійчатий характер атомних спектрів. Більше того, вона їм суперечила.


Квантова теорія світла


У 1900 р. німецький вчений М. Планк вивчаючи природу випромінювання нагрітих твердих тіл висловив припущення, що енергія випромінюється і поглинається не безперервно, а дискретно, певними порціями – квантами, пропорційними частоті коливань. Тобто перехід від одного енергетичного стану до найближчого іншого супроводжується випромінюванням або поглинанням енергії у вигляді певних порцій – квантів енергії:


Е = hn – рівняння Планка


де n – частота; h – стала Планка = 6,625 · 10–34 Дж·с.

Постулат Планка був обгрунтований у 1905 р. А. Ейнштейном, який аналізуючи явище фотоефекту дійшов висновку, що електромагнітна (промениста) енергія існує лише у формі квантів і випромінювання є потоком неподільних матеріальних часток (фотонів), енергія яких визначається рівнянням Планка.

З погляду класичної механіки обертання ē з масою m навколо ядра атома визначається моментом кількості руху – mvr. Припускається, що v і r можуть змінюватися як завгодно і неперервно.

У квантовій механіці енергія ē, що рухається, може змінюватися тільки квантами. Це означає, що величини r і v також мають змінюватися стрибкоподібно. В квантовій механіці момент кількості руху виражається співвідношенням


Квантово-механічна теорія будови речовини і може дорівнювати nКвантово-механічна теорія будови речовини


де n = 1,2,3,4.... будь-яке ціле число


Теорія Бора. Пояснення лінійчатого характеру атомних спектрів


Враховуючи квантову теорію світла, лінійчатий характер атомних спектрів, планетарну модель будови атома Резерфорда Н. Бор у 1913 р. сформулював основні свої теорії для атома водню у вигляді постулатів.

1. Поняття стаціонарної орбіталі, перебуваючи на яких електрон не поглинає і не випромінює енергію. Для електронів, що рухаються на таких орбіталях, момент кількості руху повинен бути цілим кратним кількості Квантово-механічна теорія будови речовини:


mevr = nКвантово-механічна теорія будови речовини (1)


me – маса електрона; v – швидкість руху електрона;

r – радіус орбіти (віддаль між центром ядра і електроном);

n – будь-яке ціле число; h – стала Планка.

З формули (1) визначаємо v:


Квантово-механічна теорія будови речовини (2)


Вважаючи, що електрон утримується на такій орбіті внаслідок урівноваження двох сил, що діють на нього: сила електростатичного притягання його ядром і центробіжна сила його оберту. Можемо записати:


Квантово-механічна теорія будови речовини (3)


е – заряд електрона і ядра.

З рівняння (3) визначаємо r:


Квантово-механічна теорія будови речовини (4)


Підставляємо в (4) значення v із (2):

Квантово-механічна теорія будови речовини (5)

Квантово-механічна теорія будови речовини (6)


Для першої стаціонарної орбіталі n = 1:


r1Квантово-механічна теорія будови речовини= 0,529172 · 10–8 см;

r2 = 22 · r1 = 4 r1; r3 = 9 r1; r4 = 16 r1, тобто r1 : r2 : r3 ... = 12 : 22 : 32 : 42...


З двох рівнянь (7) і (8) можна визначити швидкість руху електрона


Квантово-механічна теорія будови речовини


Для цього визначимо r з рівнянь (7) і (8), і прирівняємо між собою:


Квантово-механічна теорія будови речовини Квантово-механічна теорія будови речовини; Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини;

Квантово-механічна теорія будови речовини (9)


Підставивши значення p, me, e і h в (9), одержимо:


vn = 2,187 · 10–6Квантово-механічна теорія будови речовини м/сек.

2. Другий постулат Бора говорить про те, що випромінювання або поглинання енергії проходить квантами при переході електрона з одної стаціонарної орбіталі на іншу.

Вважаючи потенціальну енергію електрона, що знаходиться в нескінченності, рівній нулю, то потенціальна енергія електрона, що перебуває на віддалі r, має слідуюче значення:


Епот = –Квантово-механічна теорія будови речовини= –Квантово-механічна теорія будови речовини (10)


(у рівняння (10) підставили значення r із формули (6)).

Значення кінетичної енергії електрона наступне:


Екін = –Квантово-механічна теорія будови речовини= –Квантово-механічна теорія будови речовини (11)


(у рівняння (11) підставили значення v із формули (2)).

Тоді повна енергія електрона рівна:


Е = Епот + Екін = –Квантово-механічна теорія будови речовини


Зміна енергії атома при переході електрона з орбіти n = b на орбіту з n = a буде визначатись рівнянням


Еb – Еa = hn = Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини;

n = Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини; n = RКвантово-механічна теорія будови речовини (R – стала Рідберга)

В результаті Н. Бор визначив сталу Рідберга і показав, що найменше значення енергії електрона атома водню рівне (–R). При переході електрона з одної можливої орбіти на іншу поглинається або випромінюється енергія (мал. ).

Але теорія Бора не спроможна була пояснити порядок розміщення декількох електронів на орбіталі. Складна структура спектру багатоелектронних атомів вимагала більш глибокого наукового пояснення.

Подальше удосконалення теорії будови атома пов’язане з хвильовим характером руху мікрочасток і ймовірним методом опису мікрооб’єктів. У 20-х роках ХХ століття завдяки роботам де Бройль, Е. Шредінгера, В. Гейзенберга були розроблені основи хвильової теорії про корпускулярно-хвильову природу світла.


Квантово-механічна теорія будови речовини

Мал. . Схема виникнення водневого спектру.


У 1924 р. де Бройль, розвиваючи теорію квантів, ввів поняття про «корпускулярні» хвилі. Він відмітив, що для фотонів повинні виконуватись два основних рівняння:


Е = hn; E = mс2; mс2 = hn; mс2 = hКвантово-механічна теорія будови речовини; n = Квантово-механічна теорія будови речовини; λ = Квантово-механічна теорія будови речовини;

P = mс – кількість руху або імпульс.


Потім висунув гіпотезу, що рух таких часток, як електрони, пов’язаний з хвильовим рухом, довжина хвилі якого має вираз аналогічний відповідному рівнянню для фотонів λ = Квантово-механічна теорія будови речовини, де m – маса частки (в г); v – швидкість руху частки (см/сек). Ця гіпотеза про хвильову природу електронів одержала експериментальне підтвердження, коли Девіссон і Джермер (1927 р.) і Томсон і Рід (1928 р.) незалежно один від одного показали, що пучок електронів може давати дифракційний інтерференційний ефект. Це явище можна пояснити тільки, якщо електронному пучку приписати хвильові властивості. Тому можна сказати, що не тільки світлові хвилі ведуть себе як потік малих часток (фотонів), але і потоки малих часток , таких як електрони. Це протиріччя було розв’язане за допомогою принципа невизначенності Гейзенберга (1927 р.). Цей принцип можна проілюструвати ”уявним експериментом”, в якому розглядається поведінка даної системи при даних умовах. Припустимо, що електронна пушка може вистрілити один електрон, направивши його горизонтально з відомою швидкістю в абсолютно вакуумовану посудину.


Квантово-механічна теорія будови речовини

Мал. . Уявний експеримент Гейзенберга:

1 – електронна пушка; 2 – джерело світла;

3 – мікроскоп.


Джерело світла (2) може випускати фотони будь-якої необхідної енергії (тобто частоти або довжини хвилі). Єдиний електрон можна спостерігати в ідеальний мікроскоп. Спочатку електрон буде рухатись по параболічній траєкторії під дією гравітаційного поля Землі. Але, коли він зіткнеться з фотоном, що має певну масу, то він відскочить і його швидкість зміниться. Тому, ведучи спостереження через послідовно малі проміжки часу можна помітити, що електрон рухається зигзагоподібно під впливом послідовних зіткнень з фотоном.

Якщо енергію фотонів (hn) знизити, то можна зменшити вплив зіткнень. Однак, це приведе до збільшення довжини хвилі Квантово-механічна теорія будови речовини світла і тому електрон буде визначатися менш точно, внаслідок зниження роздільної здатності мікроскопа. Таким чином, при використанні світла низької частоти можна точно знати швидкість електрона, але не його положення.

З іншого боку, світло з короткою довжиною хвилі складається з фотонів