Xreferat.com » Рефераты по биологии и химии » Карбоновые кислоты, их производные

Карбоновые кислоты, их производные

мы увидим дальше, введение в радикал кислоты некоторых атомов или групп атомов может значительно повысить способность органических кислот к диссоциации.

Образование солей

При взаимодействии с основаниями (реакция нейтрализации), с окислами или с активными металлами водород карбоксильной группы кислоты замещается на металл и образуются соли карбоновых кислот. Например:

СH3—C—OH  +  NaOH ® CH3—C—ONa + H2O 

      II                         II

      O                        О                  

 уксусная кислота                   уксуснокислый натрий (ацетат Na)

СH3—C—OH  + NH4OH (или NH3) ® CH3—C—ONH4 + H2O  

      II                                 II  уксуснокислый

      O                                 O  аммоний

Соли карбоновых кислот и щелочных металлов как соли, образованные слабыми кислотами, сильно подвергаются гидролизу и в водных растворах имеют щелочную реакцию:

CH3—C—ONa + H2O ¬® CH3—C—OH + NaOH

      II                        II 

      О                       O

Более сильные минеральные кислоты вытесняют карбоновые кислоты из их солей:

CH3—C—ONa + HCl  ¬® CH3—C—OH + NaCl

      II                        II    

      O                        О     

  

В) Реакции замещения гидроксила в карбоксиле (образование функциональных производных карбоновых кислот)

Гидроксильная группа в карбоксиле кислот может быть замещена различными атомами или группами (Х); образующиеся при этом вещества обычно называют функциональными производными карбоновых кислот; строение их может быть представлено общей формулой  R—C—X

                                                 II

                                                 O

Мы кратко рассмотрим образование и свойства таких производных кислот, или галогенангидриды, ангидриды, сложные эфиры.

Образование галогенангидридов и их свойства

Гидроксил карбоксильной группы может быть замещен галогеном; при этом образуются галогенангидриды карбоновых кислот. Наиболее часто применяются хлорангидриды; они образуются, например, при действии на кислоты пятихлористого фосфора PCl5:

 R—C—OH  + PCl5 ® R—C—Cl + POCl3 + HCl 

     II                     II  

     O                    O  

В галогенангидридах галоген соединен с радикалом кислоты – ацилом, поэтому их иначе называют галогенацилами или ацилгалогенидами. В частности, хлорангидрид уксусной кислоты называется хлористым ацетилом или ацетилхлоридом. Он представляет собой бесцветную дымящую на воздухе жидкость с Ткип. 55 оС; d420= 1.105

Галогенангидриды – очень реакционноспособные вещества; их применяют для разнообразных синтезов, при которых галоген обменивается на различные группы и образуются другие производные кислот. При действии воды происходит гидролиз галогенангидридов и они разлагаются, образуя карбоновую кислоту и галогеноводород:

R—C—Cl  +  HOH  ® R—C—OH  + HCl 

    II                     II  

    O                    O        

С хлорангидридами низших кислот реакция протекает уже на холоду, обычно бурно, с выделением тепла.

Образование ангидридов и их свойства

При отщеплении молекулы воды от двух молекул кислоты образуются ангидриды карбоновых кислот. Реакция протекает под влиянием катализатора, над которым пропускают пары кислот, и может быть в общем виде представлена схемой:

      R—C—OH  + HO—C—R ® R—C—O—C—R + H2O

         II             II          II     II  

         O              O          O     O      

        кислота                 кислота              ангидрид

Как видно из общей формулы, ангидриды представляют собой производные кислот, состоящие из двух соединенных через кислород кислотных остатков (ацилов).

Ангидриды получают также действием галогенангидрида кислоты на соль той же кислоты:

R—C—Cl  +  NaO—C—R  ® R—C—O—C—R + NaCl

    II              II           II      II           

    O              O           O      O   

  хлорангидрид              соль                   ангидрид

Большое практическое значение имеет ангидрид уксусной кислоты, или уксусный ангидрид (ацетангидрид). Он может быть получен из хлористого ацетила и ацетата натрия:

СH3—C—Cl + NaO—C—CH3 ® CH3—C—O—C—CH3 + NaCl

      II             II               II      II    

      O             O               O     O

хлористый ацетил             ацетат натрия                  ацетангидрид

В настоящее время уксусный ангидрид получают действием уксусной кислоты на кетен:

CН2=С=О   +  НО—С—СН3 ¾® СН3—С—О—С—СН3   

 кетен              II                 II      II      

                    O                O      О

                 уксусная кислота                уксусный ангидрид

Уксусный ангидрид – бесцветная жидкость с острым раздражающим запахом, Ткип. 140 оС, d20=1,079.

Ангидриды кислот, подобно галогенангидридам, очень реакционноспособны; они разлагаются соединениями с активны водородом, образуя производное кислоты и свободную кислоту. При действии  воды ангидриды гидролизуются на две молекулы кислоты (а), под действием аммиака образуются соответствующие амины (б), воздействием спирта можно получить соответствующий сложный эфир (в):

(а) R—C—O—C—R + HOH ® R—C—OH + HO—C—R

   II      II                  II             II

   O     O                  O             O

(б) CH3—C—O—C—CH3 + NH3 ® CH3—C—NH2 + CH3—C—OH

    II      II                   II             II   

    O      O                     O               O 

      уксусный ангидрид (ацетангидрид)                    ацетамид          уксусная кислота

(в) CH3—C—O—C—CH3 + НО—СН3 ® CH3—C—O—СН3 + CH3—C—OH

    II     II                        II                II   

    O      O                          O метилацетат          O                    

Образование сложных эфиров

Сложными эфирами называют производные карбоновых кислот, образовавшиеся в результате замещения гидроксильной группы в карбоксиле кислоты на остаток спирта —OR. Общая формула сложных эфиров  

       R—C—O—R'  

          II

          O   

Их можно рассматривать и как соединения, в которых радикал кислоты (ацил) связан через кислород с углеводородным радикалом (алкилом).

Сложные эфиры могут быть получены путем реакции этерификации – при непосредственном взаимодействии кислоты со спиртом.

Образование амидов и их свойства

Амидами называют производные карбоновых кислот, образующиеся в результате замещения гидроксила в карбоксиле кислоты на одновалентный остаток аммиака – аминогруппу –NH2. Общая формула амидов  R—C—NH2

                                                       II

                                                       O           

Амиды могут быть получены нагреванием сухих аммониевых солей карбоновых кислот; при этом выделяется вода и образуется амид:

CH3—C—ONH4  ® CH3—C—NH2 + H2O

      II                 II

      O                 O

уксуснокислый аммоний         амид уксусной кислоты

 (ацетат аммония)              (ацетамид)

Другой способ заключается в действии аммиака на галогенангидриды и ангидриды кислот:

СH3—CH2—C—Cl + H—NH2 ® CH3—CH2—C—NH2 + HCl

            II                             II    

            O                             O

 хлорангидрид                    аммиак          амид пропионовой кислоты

 пропионовой кислоты                             (пропионамид)  

Только амид муравьиной кислоты (формамид) HCONH2 – жидкость, остальные амиды – твердые вещества.

Амиды легко гидролизуются при нагревании с водой, особенно в присутствии минеральных кислот или оснований; при этом образуется кислота и выделяется аммиак:

R—C—NH2 + H—OH ® R—C—OH + NH3

    II                       II      

    O                      O    

При нагревании амидов с P2O5 или с другими водоотнимающими средствами выделяется молекула воды и образуются нитрилы кислот – соединения, содержащие в молекулах вместо карбоксильной группы остаток синильной кислоты H—CºN – так называемую нитрильную группу - —CºN:                 

                   t;  Р2О5

      R—C—NH2  ¾¾¾®   R—CºN + H2O  

         II                 

         O               

Нитрилы при гидролизе образуют соответствующие им по числу углеродных атомов карбоновые кислоты и имеют большое значение для их синтеза.

В) Реакции за счет углеводородного радикала

Галогенирование карбоновых кислот

 Галогены могут замещать водород в углеводородных радикалах кислот, образуя галогенкарбоновые кислоты; при этом под влиянием карбоксильной группы наиболее легко замещаются атомы водорода в a-положении к этой группе, т.е. при соседнем с карбоксилом углеродном атоме:

g        b       a

СH3—CH2—CH2—COOH + Br2 ®  CH3—CH2—CHBr—COOH + HBr

   масляная кислота              a-броммасляная к-та

Возможно и более глубокое замещение водорода. Так, при действии хлора на уксусную кислоту все атомы водорода метильной группы постепенно замещаются на хлор; в результате образуются хлоруксусные кислоты:

      CH3—COOH + Cl2 ® CH2Cl—COOH + HCl

      уксусная к-та        монохлоруксусная к-та

      CH2Cl—COOH + Cl2 ® CHCl2—COOH + HCl

                          дихлоруксусная к-та

      CHCl2—COOH + Cl2 ® CCl3—COOH + HCl

                         Трихлоруксусная к-та  

Монохлоруксусная кислота (Тпл. 61,5 оС) и трихлоруксусная кислота (Тпл. 59 оС) – кристаллические вещества; дихлоруксусная кислота – жидкость (Ткип. 194 оС).

Галогенпроизводные кислоты дают все характерные для карбоксильной группы реакции, но в результате влияния, оказываемого на эту группу галогеном, они являются во много раз более сильными кислотами и приближаются в этом отношении к сильным неорганическим кислотам (Кдисс. = 1,4×10-3, 3,32×10-2 и 2,0×10-1 для моно-, ди- и трихлоруксусных кислот, соответственно).

Способы получения одноосновных кислот

Карбоновые кислоты часто встречаются среди природных продуктов как в свободном, так и особенно в виде сложных эфиров. При гидролизе последних образуется кислота и спирт:

R—C—O—R' +  H—OH ® R—C—OH + R'—OH

    II                         II   

    O эфир                     O кислота     спирт

В частности, таким путем получают высшие одноосновные кислоты при гидролизе жиров. Большое значение имеют синтетические способы получения кислот.

Окисление углеводородов

Непредельные углеводороды могут легко окисляться с распадом молекулы по месту двойной связи; в качестве продуктов окисления получаются и кислоты. Предельные углеводороды окисляются также с распадом молекулы, но значительно труднее, причем разрыв углеродной цепи может происходить в ее различных местах; поэтому в результате образуются сложные смеси карбоновых кислот. В настоящее время разработано каталитическое окисление предельных углеводородов кислородом воздуха при умеренных температурах. Например:

                    О2

СН3—СН2—СН3  ¾¾¾¾¾® СН3—СООН + НСООН 

                  соли Са, Mn

Окисление первичных спиртов и альдегидов

Первичные спирты и альдегиды гладко окисляются, образуя карбоновые кислоты с тем же числом углеродных атомов; при этом спирт окисляется в альдегид, а последний – в кислоту:

     R—CH2 ® R—CH ® R—C—OH

        I          II         II   

        OH        O         O 

   перв. спирт    альдегид    кислота

Можно использовать альдегиды, получаемые методом оксосинтеза. Таким образом, сырьем для получения кислот могут служить этиленовые углеводороды и окись углерода.

Гидролиз тригалогенпроизводных

При нагревании с растворами щелочей галогенпроизводных, у которых три атома галогена находятся при одном и том же атоме углерода, получаются карбоновые кислоты. 

Карбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производные              Cl 3NaOH                OH                  О

Карбоновые кислоты, их производныеКарбоновые кислоты, их производныеСH3—CH2—C—Cl ¾¾® CH3—CH2—C—OH ® CH3—CH2—C—OH +

              Cl  -3NaCl  неустойчивый  OH  пропионовая к-та  H2O

1,1,1-трихлорпропан     трехатомн. спирт

Промежуточно образуется трехатомный спирт с тремя гидроксилами при одном углероде; такие спирты сразу же выделяют воду, превращаясь в кислоту.

Гидролиз нитрилов

При действии солей синильной (цианистоводородной) кислоты на галогенпроизводные углеводородов образуются нитрилы кислот:

R—Cl  +  K—CºN  ®  R—CºN  +  KCl

Нитрилы гидролизуются до карбоновых кислот. Эту реакцию можно представить следующим суммарным уравнением:

Карбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производныеКарбоновые кислоты, их производные                           ОН            О     Н2О

R—CºN  +  H2O  ®   R—C=NН  ®  R—C—NН2  ¾¾®

Карбоновые кислоты, их производныеКарбоновые кислоты, их производные нитрил

® R—C—OH  +  NH3

           II

            О кислота         аммиак

При нитрильном синтезе получаются кислоты, содержащие на один углеродный атом больше, чем исходные галогенпроизводные, т.е. достигается наращивание углеродной цепи. Так, например, из хлорэтан может быть получена пропионовая кислота:

               +K—CºN                           +2H2 O

СН3—СН2—Cl ¾¾¾® CH3—CH2—CºN ¾¾® CH3—CH2—COOH

     хлорэтан         -KCl    нитрил пропио-        -NH3   пропионовая кислота

                       новой кислоты

Отдельные представители предельных одноосных кислот

Муравьиная кислота Н-СООН.

Безводная муравьиная кислота – бесцветная жидкость с резким запахом. Технический продукт представляет собой нераздельно кипящую смесь с водой (Ткип. 107,3 оС), содержащую 77,5 % кислоты.

Как уже указано, муравьиная кислота в отличии от других кислот содержит в соединении с карбоксилом не углеводородный радикал, а водород, и из ее формулы видно, что в ней имеется как бы альдегидная группа >С=О, соединенная с гидроксилом. Поэтому, подобно альдегидам муравьиная кислота является сильным восстановителем и окисляется до угольной кислоты, разлагающейся с образованием СО2 и Н2О. В частности, она восстанавливает окись серебра (реакция серебряного зеркала):

Н-С-ОН + Ag2O ¾¾®  2Ag + HO—C—OH  ®  CO2 + H2O                 

  ú ê      NH4 OH             ú ê                           

  О                О

  муравьиная кислота               угольная кислота

Под действием серной кислоты при нагревании муравьиная к-та разлагается, образуя окись углерода и воды:

Н-СООН ¾¾® СО + Н2О

В природе свободная муравьиная кислота встречается в выделениях муравьев, в соке крапивы, в поте животных.

В промышленности муравьиную кислоту получают, пропуская окись углерода через нагретую щелочь:

NaOH + CO  ®  H—COONa

            муравьинокислый натрий

Из образовавшейся соли муравьиную кислоту выделяют действием разбавленной серной кислоты:

H—COONa + H2SO4 ® H—COOH + NaHSO4

Применяют муравьиную кислоту при крашении тканей, в качестве восстановителя, в различных органических синтезах.

Уксусная кислота СН3-СООН

Безводная уксусная кислота – бесцветная жидкость с характерным острым запахом, ее иначе называют ледяной уксусная кислотой, т.к. она замерзает уже около +16 оС, образуя кристаллическую массу, напоминающую лед. Обычная крепкая уксусная кислота (уксусная эссенция) содержит 70-80 % кислоты.

Уксусная кислота – одно из наиболее давно известных органических веществ, в древности ее получали в виде уксуса при скисании вина. Она широко распространена в природе, содержится в выделениях животных, в растительных организмах, образуется в результате процессов брожения и гниения в кислом молоке, в сыре, при прогаркании масла и т.п.  В промышленности уксусную кислоту получают следующими способами:

Из ацетилена (синтетическая уксусная кислота). Путем гидратации ацетилена по реакции Кучерова получают уксусный альдегид, последний кaталитически окисляют кислородом воздуха в уксусную кислоту. Схема процесса:     НОН                  O2

СНºСН ¾¾® СН3—СН=О  ¾¾® СН3—СООН

 ацетилен    Hg   уксусный альдегид     кат.    уксусная кислота

Исходным сырым для получения уксусной кислоты по этому способу фактически является уголь (С) и известь (СаО), т.к. из них в электрических печах получают карбид кальция (СаС2), а из последнего действием воды – необходимый для синтеза уксусной кислоты ацетилен. Этим способом в настоящее время получают основное количество уксусной кислоты.

Из этилена (синтетическая уксусная кислота).

Карбоновые кислоты, их производныеКарбоновые кислоты, их производные           PdCl2,  CuCl2           O    О2

СН2=СН2  ¾¾¾¾®  СН3—С—Н  ¾¾® СН3—СООН

             H2O, O2                 кат.    уксусная кислота

Уксуснокислым брожением жидкостей, содержащих этиловый спирт (биохимическая уксусная кислота). Под влиянием бактерий Micoderma aceti («уксусного грибка»), зародыши которых в изобилии имеются в воздухе, этиловый спирт в разбавленном водном растворе (до 10%) окисляется кислородом воздуха в уксусную кислоту по следующему суммарному уравнению:                        О2

СН3—СН2—ОН ¾® СН3—СООН  +  Н2О

Этот процесс называется уксуснокислым брожением, он происходит при участии вырабатываемого «уксусным грибком» энзима и протекает сложным путем, через ряд промежуточных стадий. Обычно берут вино или пиво, которые при стоянии на воздухе, в результате окисления имеющегося в них спирта, постепенно «скисают» и превращаются в натуральный уксус. Последний содержит 5-8 % уксусной кислоты и в таком виде его употребляют в пищу, а также для приготовления маринадов (консервированных овощей, грибов, рыбы и т.п.). Путем дробной перегонки из уксуса можно получать уксусную эссенцию. Этим способом в настоящее время получают сравнительно небольшое количество уксусной кислоты.

Сухой перегонкой дерева (лесохимическая уксусная кислота). При сухой перегонке дерева одним из продуктов является водный слой, содержащий до 10 % уксусной кислоты. Его нейтрализуют известью, при этом образуется кальциевая соль уксусной кислоты (СН3СОО)2Са (древесный порошок), которую обрабатывают рассчитанным количеством серной кислоты, таким образом, выделяют концентрированную уксусную кислоту.

Окисление углеводородов нефти. Этот способ весьма перспективен и в последние годы приобретает все большее значение. Н.М. Эммануэлем предложен и разработан процесс прямого окисления бутана кислородом воздуха при 145 оС и 50 атм. по схеме:

                              Р, t, О2

2СН3-СН2-СН2-СН3 ¾¾¾® 2СН3СООН + СН3-СО-СН2-СН3 + 2Н2О

    бутан            уксусная кислота     метилэтилкетон

Выход уксусной кислоты достигает 80 %, побочный продукт – метилэтилкетон. В качестве исходного можно использовать бутан из попутного нефтяного газа.

Уксусная кислота

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: