Xreferat.com » Рефераты по биологии и химии » Информационное управление клеточными процессами

Информационное управление клеточными процессами

системой, посредством которой осуществляется поступательное движение, непрерывность и вечность жизни. Эти процессы, как известно, обеспечиваются наследственной информацией. Несмотря на многочисленные внешние различия, клетки разных типов обладают поразительным сходством. К примеру, все клетки пользуются одним и тем же молекулярным алфавитом и типовой структурной организацией управляющих и управляемых систем. Кроме того, в любых клетках все информационные массивы ДНК подчинены одной и той же цели – формированию структурной, информационной и функциональной организации живой системы, её развитию и воспроизведению.

В структурах живой клетки мы не найдем привычной начинки информационных технических систем с четким разделением материальных и программных средств. В клетках функционируют только те программируемые биологические макромолекулы, структуры и компоненты, которые после “биосинтеза” сами по себе становятся материально-энергетическими и программно-аппаратными средствами управления. Все они встраиваются в общую управляющую систему для выполнения тех или иных биологических функций и информационных операций! Благодаря этому, биомолекулы и структуры клетки всё время находятся в процессе постоянного и непрерывного движения, обновления, расщепления и информационного взаимодействия друг с другом, который и называется жизнью. Отсюда, как следствие, вытекает и тот факт, что все клеточные процессы управляются, регулируются и взаимно координируются той программной информацией, которая в данное время загружена в аппаратную систему клетки, то есть, перенесена и находится в функциональных биомолекулах и структурах клетки!

Таким образом, клеточная система управления и её выходное управляющее звено (ферменты, белки и другие функциональные биомолекулы), руководствуясь загруженной в их структуры программной информацией, осуществляют “автоматизированное” управление всеми метаболическими путями и клеточными процессами. Причем, если биохимики относятся к ним как к процессам чисто химическим, то управляющая система клетки их явно воспринимает как процессы информационные. В связи с этим, очевидно, что главной задачей программных средств, применяемых в живых клетках, является обеспечение оперативного взаимодействия выходного звена управления (ферментов, белков и т. д.) с различного рода объектами управления (субстратами). Любопытно, что для рассмотрения клеточного метаболизма существуют подробные карты метаболических путей.

К сожалению, в этих картах, как правило, среди множества биохимических деталей, трудно понять природу и принципы организации химических превращений. Кроме того, здесь практически не отражена ключевая роль информационных управляющих процессов. Известно, что в технике, для объяснения общих принципов работы информационных систем управления, применяются свои специфические понятия и термины, структурные или функциональные схемы. Информационные процессы в клетке и в технических системах имеют общее назначение и во многом сходны. Так как живая клетка является сложной информационной системой, то для рассмотрения общих принципов её организации, так же как и для объяснения причин её функционирования, можно составить и применить такого рода структурную схему. Однако даже самая упрощенная схема самой простой клетки указывает на крайне высокую сложность её структурной и функциональной организации. Систематизируя отдельные информационные фрагменты и известные факты, в чем-то их переосмысливая, автор статьи сконструировал подобную схему и назвал её: “Информационное управление клеточными процессами. Структурная схема”. (Прилагается в конце статьи, с. 27).

Структурная схема информационных процессов и сопряженных с ними процессов биохимических должна облегчить понимание биологической сущности живого состояния и показать важнейшие условия, необходимые для поддержания жизнедеятельности любых клеток. А приведенный материал в данной работе должен помочь понять информационную основу биологических процессов. Предлагаемая схема удобна тем, что в ней четко просматриваются важнейшие информационные принципы организации живой клетки, указаны направления потоков управляющей и сигнальной (осведомляющей) информации. Такого рода схема показывает, что управляющую систему и метаболизм живой клетки можно наглядно представить в виде нескольких отдельных операционных (функциональных) блоков.

5. О структурной схеме.

Живая клетка является элементарной самоуправляемой биологической единицей. Она относится к информационной управляющей и открытой биохимической системе, извлекающей свободную энергию и сырьевые ресурсы из окружающей среды. Основой её организации является информационная молекулярно-биологическая система управления. Управляющая система клетки содержит все необходимые узлы, устройства и компоненты, которые служат для хранения, передачи, переработки и использования генетической информации в различных биологических процессах (см. структурную схему).

Процесс управления в сложных технических устройствах и в живой клетке, в определённой мере, выполняет одни и те же задачи, хотя есть и существенные различия в информационных субстратах и в организации самих информационных процессов. Кроме того, если информация в технических устройствах есть функция аппаратной системы, то в живых клетках чаще всего наоборот, – информационные сообщения сами являются базовой основой построения или реорганизации аппаратной системы клетки (белков, ферментов и других функциональных устройств). Сердцем управляющей системы живой клетки являются генетическая память и локальные биопроцессорные контуры управления, находящиеся, как в цитоплазме клетки – трансляционный аппарат, так и биопроцессорные системы верхнего уровня, находящиеся в клеточном ядре – транскрипционный аппарат.

Живая клетка как элементарная основа жизни является не только центром “автоматизированной” переработки вещества, энергии и информации, но и объектом постоянной реконструкции её компонентов, надмолекулярных ансамблей и органелл. Она является центром синтеза и распада различных биологических макромолекул и структур. Причем, и это важно отметить, – все биологические функции и химические процессы в клетке поддерживаются и осуществляются только под руководством генетической информации. Следовательно, живая клетка самоуправляется и “реконструируется” информационным путём. Это удивительное свойство является основным фактором, определяющим движение клетки по пути клеточных циклов развития и самовоспроизведения.

Как видно из структурной схемы, клетка состоит из двух основных взаимозависимых и взаимосвязанных подсистем: из информационной управляющей (матричные процессы) и управляемой биохимической (ступенчатые процессы). Живая клетка является мультипроцессорной системой, она состоит из нескольких функциональных биопроцессорных блоков:

1) ядерных биопроцессорных блоков управления верхнего уровня (генетическая память, транскрипционный аппарат, устройства управления, блоки процессинга и каналы ввода/вывода);

2) цитоплазматических молекулярных биопроцессорных блоков управления (оперативная память РНК, трансляционный аппарат, устройство управления, блоки конформационного преобразования и процессинга);

3) выходного управляющего звена (ферментов и других клеточных белков), функционирующих во всех биопроцессорных системах и операционных блоках катаболизма, амфиболических путей, синтеза элементной базы и блока синтеза различных макромолекул клетки (белков, компонентов мембран и органелл и т. п.)

Именно в этих операционных блоках осуществляется управление ступенчатыми химическими реакциями клеточного метаболизма [6].

6. Генетическая память.

Хранилищем и источником наследственной информации в каждой живой клетке является ДНК хромосом. Генетическая память, как долговременное запоминающее устройство, служит для длительного хранения данных и программ. Однако, естественно, всегда надо помнить, что генетическая память хромосом – это понятие несравненно более обширное и более грандиозное, чем, к примеру, память компьютерная. К этой многосложной молекулярной структуре, отождествляющей “спираль жизни”, нельзя относиться без особого уважения и благоговения.

Генетическая память обладает феноменальными информационными возможностями. И, действительно, в последовательности оснований внутри двойной спирали ДНК закодирована вся необходимая информация для осуществления жизнедеятельности, развития и самовоспроизведения живой системы. Генетическая память имеет: операционную систему; полный набор программных средств для обслуживания ступенчатых процессов катаболизма и энергетического обеспечения; программные средства для обслуживания процессов биосинтеза молекул, систем репарации ДНК, аппаратных устройств ввода молекулярной информации питательных веществ и вывода конечных продуктов обмена веществ и т. д.

Генетическая память живой клетки имеет пакет программ, кодирующих и программирующих молекулярные средства и механизмы самовоспроизведения, которые начинают синтезироваться и действовать строго в соответствии с общей программой развития. А программирование самой генетической памяти осуществляется особым репликативным аппаратом живой клетки в S-период её развития, и дочерние клетки получают полный дубликат генетического материала. Этот аппарат является молекулярной биопроцессорной системой репликации.

Программное обеспечение клетки – это важнейший проблемный вопрос молекулярной биологической информатики. В генетической памяти хранится множество пакетов программ, обеспечивающих те или иные биологические функции и процессы. Поэтому “автоматизированное” управление процессами решения различных биологических задач в живой системе осуществляется на основе принципа программного управления. Для программной переработки генетической информации широко применяется принцип микропрограммного управления, когда выполнение одной биологической операции (например, в процессах репликации, транскрипции или трансляции), распадается на последовательность отдельных элементарных операций. А главной задачей программных средств, используемых в живых клетках, является обеспечение оперативного взаимодействия управляющей системы с молекулярными объектами управления (субстратами). Причем, ключ к решению биологических задач, с помощью управляющей системы, лежит не в переборе вариантов при поиске решений.

Программы, загруженные в структуру белковых и других биомолекул, реализуют стереохимические принципы узнавания и динамического взаимодействия, которые гарантируют точность матричного спаривания биологических молекул и проверку их на комплементарное соответствие друг другу. То есть в процессе взаимодействия биомолекул широко используются принципы обратной связи. Этим достигается не только повышенная помехоустойчивость при прохождении управляющей информации, но и высокая достоверность передачи сообщений. В свете рассмотренных идей (молекулярной биохимической логики и информатики), становятся понятными и механизмы организации доступа к информации генетической памяти. Хромосомы ядра, благодаря присутствию в них структурных и регуляторных белков, а также “малых” двухцепочечных РНК, являются чрезвычайно активными динамическими компонентами клетки. Гибкость ДНК в составе хромосом позволяет регуляторным белкам и РНК информационно связываться с различными её участками и влиять на транскрипцию генов. При этом каждый из этих управляющих белков и “малых” РНК, благодаря загруженной в их структуру информации и своим стереохимическим кодовым компонентам, – четко знает свою функциональную роль.

Согласованность действия различных управляющих, а также регуляторных белков и “малых” РНК достигается за счет генетической информации, которая заранее была загружена в их структуру. А загруженные в их структуру программы являются составляющими того пакета программ, который предназначен как для организации автоматического доступа к генам ДНК, так и для управления и регуляции процессами транскрипции генетического материала. В силу этих обстоятельств отдельные домены хроматина в хромосомах в процессе функционирования разворачиваются, а после окончания считывания информации с генов ДНК вновь упаковываются. Поэтому сами хромосомы представляют собой активные динамические структуры, в разных участках которых идут процессы считывания информации с ДНК.

Доступ к генетической памяти основан на тех же правилах информационного стереохимического управления и тех же принципах динамического взаимодействия биологических молекул друг с другом, которые являются основой управляющих био-логических процессов в живой клетке [6]. Нам остаётся лишь научиться расшифровывать и понимать эту информацию.

7. Операционная система клетки.

Важно отметить, что живая клетка, точно так же как и любая другая система для “автоматизированной” переработки информации, имеет свою “операционную систему” – набор программ, который формирует, организует и приводит в действие многие аппаратные и программные ресурсы живой клетки. В первую очередь, операционная система клетки обеспечивает построение и функционирование основных компонентов молекулярных биопроцессорных систем – транскрипционного и трансляционного аппаратов. То есть тех средств, которые предоставляют услуги для выполнения различных клеточных программ.

Операционная система – это совокупность важнейших программ, предназначенных для управления процессами считывания генетической информации и трансляции (перевода) текста программ с языка нуклеиновых кислот на аминокислотный язык белковых молекул, то есть, в конечном итоге, на стереохимический язык трёхмерных биомолекул и структур. Значит, операционная система клетки содержит встроенные функции перекодировки информации из одной системы её кодирования в другую. А для перевода закодированных сообщений используются свои программы-переводчики. Поэтому, можно сказать, что операционная система состоит из набора отдельных транскрибирующих и транслирующих программ, обеспечивающих как построение, программирование, так и функциональное поведение основных биопроцессорных комплексов живой клетки. Определённые группы генов кодируют и программируют синтез рибосомных и транспортных РНК, другие группы генов (программ) контролируют биосинтез белков и ферментов, обеспечивающих работу транскрипционного и трансляционного аппаратов (биопроцессорных систем).

В структурной схеме операционная система представлена соответствующим участком генетической памяти, своими ядерными биопроцессорными устройствами (транскрипционный аппарат, блок процессинга и каналы ввода/вывода операционной системы), которые кодируют и программируют синтез рибосомных, транспортных и информационных РНК системы. Далее иРНК, в качестве биомолекул оперативной памяти поступает в операционный блок биопроцессорной системы трансляции (см. в левой части структурной схемы), где осуществляется кодирование и программирование белков и ферментов, которые обеспечивают работу транскрипционного и трансляционного аппаратов клетки.

Таким образом, операционная система создаёт и предоставляет аппаратные средства и функциональные услуги для выполнения всех генетических программ живой клетки! Она контролирует проявление всех структурных генов клетки и соответственно является одним из основных факторов клеточной интеграции [6]. Причем, необходимо обратить внимание на сложность информационных процессов, протекающих в живой клетке, которая обусловлена тем, что многочисленные типовые молекулярные биопроцессорные единицы (например, рибосомы) параллельно работают не только с большим числом программ сразу, но и одновременно находятся в различных по назначению управляющих блоках. Если взглянуть на структурную схему, то там, для наглядности, управляющие биопроцессорные блоки распределены по разным управляющим системам.

8. Молекулярные биопроцессорные системы для микропрограммной обработки генетической информации.

Гены служат только для хранения информации, поэтому её необходимо сначала считывать, а затем определённым образом перерабатывать с тем, чтобы получить форму, приспособленную для непосредственного применения в различных биологических процессах. Вот для этой цели в клетке и применяются аппаратные средства транскрипции и трансляции, которые представляют собой ничто иное, как молекулярные системы для микропрограммной переработки генетической информации. Поэтому фактически каждая живая клетка для микропрограммной обработки генетической информации применяет такие аппаратные устройства, которые с кибернетической точки зрения вполне эквивалентны молекулярным биологическим процессорам.

Известно, что ДНК и РНК живой клетки построены из типовых мономерных звеньев – нуклеотидов. Однако между этими двумя нуклеиновыми кислотами имеются существенные структурные и функциональные различия, которые и привели к появлению в живой клетке особой молекулярной биопроцессорной системы, которая предназначена для считывания информации с ДНК-матрицы и переноса её на структуру РНК. “Этот процесс носит название транскрипции (переписывания). При этом часть двойной спирали ДНК раскручивается, и вдоль одной из её цепей движется особый фермент, который выстраивает нуклеотидные мономеры РНК против их партнёров на цепи ДНК и соединяет эти мономеры друг с другом, так что образуется длинная цепь РНК. На ДНК-матрице образуется три типа РНК: информационная (иРНК), транспортная (тРНК) и рибосомная (рРНК)” [7].

Вспомним, генетическая информация кодируется в виде последовательности нуклеотидов ДНК, – значит, все программы ДНК записаны и хранятся на линейном языке ДНК, а переписываются (транскрибируются) они на “линейную” последовательность нуклеиновых кислот РНК. Известно, что первичный транскрипт РНК в клетках эукариот – это точная копия гена, содержащая как экзоны (кодирующие последовательности транскрипта), так и интроны (некодирующие последовательности), которые должны быть удалены. В блоке процессинга “последовательности интронов вырезаются из середины транскрипта РНК, в результате чего образуется молекула иРНК, непосредственно кодирующая белок. Поскольку кодирующие последовательности с обеих сторон интрона после его удаления соединяются друг с другом, эту реакцию назвали сплайсингом РНК. Сплайсинг РНК протекает в клеточном ядре вдали от рибосом, и РНК переносится в цитоплазму только после завершения этого процесса” [8].

Процесс вырезания интронов и сплайсинг РНК (в операционном блоке процессинга) относится к малоисследованным информационным процессам. Таким образом, задача по считыванию генетической информации в оперативную память структуры РНК решается путем выполнения отдельных микроопераций строго в соответствии с программой того участка ДНК, который определяется структурным геном. А сама генетическая память, транскрипционный аппарат, блок процессинга и каналы ввода/вывода информации

Похожие рефераты: