Xreferat.com » Рефераты по биологии и химии » Сложные эфиры карбоновых кислот, их производные

Сложные эфиры карбоновых кислот, их производные

в предельные. Например:                         

                        9   10

    СН2—О—С—(СН2)7—СН=СН—(СН2)7—СН3      

     I          О       9     10                    + 3 Н

    СН —О—С—(СН2)7—СН=СН—(СН2)7—СН3     ¾¾®

     I          О        9     10                     Ni

    СН2—О—С—(СН2)7—СН=СН—(СН2)7—СН3      

                О    триолеин (жидкий)

                             9       10

          СН2—О—С—(СН2)7—СН2—СН2—(СН2)7—СН3      

          I          О       9       10

     ®   СН —О—С—(СН2)7—СН2—СН2—(СН2)7—СН3      

          I           О       9       10

          СН2—О—С—(СН2)7—СН2—СН2—(СН2)7—СН3      

                     О       тристеарин (твердый)

Твердый жир, получаемый путем гидрогенизации жидких растительных масел или жиров морских животных и рыб, называется саломасом. Его широко применяют для производства искусственного твердого пищевого жира – маргарина, а также в мыловарении и др. Различные сорта маргарина получают, смешивая саломас с молоком, в некоторых случаях – с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах последнего достигается введением в маргарин специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (СН3—С—С—СН3 - жидкость желтого цвета, содержится в коровьем масле.)        II  II

                                           О  О

 Гидрогенизация жиров имеет очень большое практическое значение. Потребность в твердых жирах в народном хозяйстве огромна. Из них получают наиболее ценные сорта мыл. Они удобнее для употребления в пищу. Кроме того, твердые жиры, поскольку они не содержат двойных связей (или содержат их значительно меньше, чем жидкие жиры), труднее окисляются и поэтому менее подвержены порче (прогорканию) при хранении. Применение гидрогенизации жидких жиров и масел дает возможность восполнить недостаток твердых жиров.

Реакции, характеризующие не насыщенность жиров

Раствор KMnO4 при встряхивании с маслами теряет фиолетовую окраску, при этом окисляются по месту двойных связей входящие в состав масел непредельные кислоты (подобно окислению этиленовых углеводородов) и восстанавливается Mn7+. Твердые жиры, содержащие мало непредельных глицеридов, обесцвечивают раствор KМnO4 в значительно меньшей мере.

Окрашенные в бурый цвет растворы иода и брома обесцвечиваются при взаимодействии с входящими в состав жиров непредельными кислотами в результате присоединения галогенов по двойным связям. Например:

      9    10                I 2                    9      10

-СО-(СН2)7-СН=СН-(СН2)7-СН3 ¾® -СО-(СН2)7-СН-СН-(СН2)7-СН3                     

      остаток олеиновой к-ты                  I   I  остаток 9,10-иод-

                                       I   I  стеариновой к-ты                                                   

Эта реакция не только качественно, но и количественно характеризует не насыщенность (непредельность) жиров. Так, представление о содержании непредельных кислот в масле дает иодное число – количество граммов иода, которое может присоединяться (при соблюдении стандартных условий) к непредельным кислотам в 100г. жиров. Для большинства жиров и растительных масел иодное число 30-150, для сливочного масла - 30, для говяжьего сала - 32-50, для богатого непредельной олеиновой кислотой оливкового («прованского») масла 75-88. Высокие иодные числа у богатых полиненасыщенных кислотами высыхающих масел (льняное 170-180, конопляное 140-165).

Для характеристики содержания олеиновой кислоты применяют элаидиновую пробу: масло обрабатывают азотистой кислотой, при этом жидкие глицериды олеиновой кислоты (цис-изомер) превращаются в твердые глицериды элаидиновой кислоты (транс-изомер). Так, жидкое оливковое масло, богатое олеиновой кислотой (до 80 %), при действии азотистой кислоты затвердевают в плотную массу.

Все жиры являются горючими веществами. При горении их выделяется большое количество тепла: 1г жира при горении дает 9300кал.

Масла и некоторые животные жиры склонны к самовозгоранию при определенных условиях. Для оценки склонности масел к самовозгоранию необходимо знать количество ненасыщенных связей, что оценивают иодным числом. Чем больше иодное число, тем больше в масле непредельных соединений, а следовательно, оно будет более склонно к самовозгоранию. Практика показывает, что способны самовозгораться масла с иодным числом выше 50. Ниже приведены иодные числа масел и жиров. Масла: льняное (175-192);  подсолнечное (122-142), конопляное (150-170), соевое (114-139), коровье (25-47), жиры: рыбий (165-185), тюлений (122-162), моржевый (168), дельфиновый (130-140).

Физические свойства и показатели пожарной опасности насыщенных карбоновых кислот

Кислоты

Плот-

ность г/см3

Температура, оС

Температур-

ные пределы воспламенения, оС

кипения вспышки самовоспламенения нижний верхний
Муравьиная (НСООН) 1,220 100,7 60 504
Уксусная (СН3СООН) 1,049 118,1 38 454 35 76
Пропионовая (СН3СН2СООН) 0,998 141,1 54 402 45 83
Масляная СН3(СН2)2СООН 0,959 163,5 72 385 62 96

Физические свойства и показатели пожарной опасности ненасыщенных карбоновых кислот

Кислоты Плотность,г/см3 Температура, оС Иодное число
кипения вспышки самовоспламенения
Акриловая (С2Н3СООН) 1,062 1,41 48 440
Олеиновая (С17Н33СООН) 0,891 286 184 280 89,96
Линолевая (С17Н31СООН) 0,900 229 - - 181,20
Линоленовая (С17Н29СООН) 0,910 230 - - 273,80

Перекиси и гидроперекиси

Органическими перекисями называют производные перекиси водорода Н-О-О-Н, строение которых можно представить формулой R-O-O-R. Производные перекиси водорода образованные в результате замещения на углеводородный радикал только одного атома водорода, называются гидроперекисями, они имеют строение R-O-O-H. В диэтиловом эфире (CH3-CH2-O-CH2-CH3) образуется смесь перекисных соединений, среди них, например, перекись оксиэтила

СН3—СН—О—О—СН—СН3

      I           I       

      ОН         ОН    

Для разложения перекисей долго стоявших эфир перед перегонкой рекомендуется обработать раствором щелочи или какого-нибудь восстановителя (Na2SO3 – сульфит натрия).

Чтобы предотвратить образование перекисей, эфир надо хранить в хорошо закупоренных сосудах из темного стекла.

Перекисные соединения при нагревании могут разлагаться со взрывом. 

Пероксикарбоновые кислоты и ацилпероксиды

Получают ацилированием пероксида водорода, либо окислением альдегидов:     O                      O

     R—C—X +  HOOH ¾® R—C—O—OH    +    HX

                            пероксикарбоновая к-та

      O          O                  O    O

R—C—X + HO—O—C—R ¾® R—C—O—O—C—R + НХ

                              ацил пероксида  

          O     O (сухой)            O

    R—C—H   ¾¾¾® R—C—O—OH

                -10....-30 оC       

                                 O

Пероксиуксусная кислота CH3—C—O—OH. Бесцветная жидкость, Ткип. 25 оС, хорошо растворима в воде и органических растворителях. При 100-110 оС разлагается со взрывом. Получается окислением ацетальдегида кислородом. Используется в качестве сильного окислителя.      

                                   О

Пероксибензойная кислота С6Н5—С—О—ОН (пербензойная кислота, реагент Н.Прилежаева). бесцветное кристаллическое вещество, Тпл.=41 оС, слабо растворимое в воде. Получают из бензоилпероксида:                             

                                       O               O

С6Н5-СО-О-О-СО-С6Н5 + Na-O-CH3 ¾® C6H5-C-O-O-Na + C6H5-C-O-CH3

 Перекись бензоила (C6H5-CO)2O2. Это соединение представляет собой продукт замещения водородных атомов в перекиси водорода (H2O2) двумя  остатками бензойной кислоты – бензоильными радикалами. Получают перекись бензола действием хлорангидрида бензойной кислоты на Н2О2 в присутствии щелочи или на перекись натрия (Na2O2):

             O         2NaOH           O

     С6Н5—С—Cl  + HO ¾¾® С6Н5—С—O     + 2NaCl + 2H2O

     С6Н5—С—Cl      I        С6Н5—С—O 

              O     HO                O

 хлористый бензоил

Перекись бензоила – бесцветные кристаллы с Тпл.=106-108 оС. Имеет большое практическое значение как инициатор полимеризации соединений с двойной связью типа СН2=СНХ.

[Соединения типа перекисей легко распадаются на радикалы.]

Гидроперекись изопропилбензола. В последние годы разработан и применяется в промышленности способ синтеза фенола исходя из изопропилбензола (кумола). Последний в свою очередь получают по реакции Фриделя-Крафтса взаимодействием бензола с пропиленом.

Изопропилбензол в присутствии катализаторов окисляют кислородом воздуха – образуется гидроперекись изопропилбензола.

       CH3               CH3                           CH3

       I                   I           H2 SO4               I    

C6H5—CH + O2 ¾® C6H5—C—O—OH  ¾¾® C6H5—OH + C=O

       I                 I                          I

      CH3                CH3                           CH3

Реакция протекает с очень хорошим выходом фенола и ацетона.

Список литературы

Писаренко А.П., Хавин З.Я. Курс органической химии. М., Высшая школа,  1975. 510 с.

Нечаев А.П. Органическая химия. М., Высшая школа, 1976. 288 с.

Артеменко А.И. Органическая химия. М., Высшая школа, 2000. 536 с.

Березин Б.Д., Березин Д.Б.  Курс современной органической химии.  М., Высшая школа, 1999. 768 с.

Ким А.М. Органическая химия. Новосибирск, Сибирское университетское издательство, 2002. 972 с.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: