Xreferat.com » Рефераты по географии » Петромагнетизм континентальной литосферы и природа региональных магнитных аномалий

Петромагнетизм континентальной литосферы и природа региональных магнитных аномалий

Рис. 2

Появление и состав магнитных минералов определяются общим давлением P, температурой T, летучестью кислорода fO2, водородным показателем pH и другими менее существенными параметрами. По данным экспериментов с базальтовыми системами нормальной железистости [Лыков, Печерский, 1976, 1977; Рингвуд, 1981 и др.], титаномагнетиты кристаллизуются при T<1100oC и P<13кбар. С ростом давления титаномагнетиты сначала сменяются слабомагнитной Mg-Al-феррошпинелью (рис.2), затем гранатом. Повышение содержания щелочных элементов в базальтах ведет к более ранней кристаллизации рудных фаз и повышению содержания титана в титаномагнетитах и содержания магния+алюминия в Mg-Al-феррошпинелях [Петромагнитная модель..., 1994; Печерский и др., 1975]. Есть примеры экспериментального подтверждения прямого влияния давления на соотношение Fe3+/Fe2+ в расплаве, оно уменьшается с ростом P [Борисов и др., 1991], соответственно повышается содержание титана в кристаллизующемся титаномагнетите [Геншафт, Саттаров, 1981; Osborn et al., 1979].

Внутри P-T-fO2 области выделяются четыре термодинамические зоны условий образования магнитных минералов [Печерский, 1985; Печерский и др., 1975]:

гематитовая - высоко окислительные условия на поверхности Земли, где образуются минералы, содержащие только Fe3+ (гематит, маггемит, гидроокислы железа, Fe3+ - силикаты); магнетитовая - слабоокислительные условия, где образуются минералы, содержащие Fe2+ и Fe3+ (титаномагнетиты и другие феррошпинели, гемоильмениты); силикатная - относительно восстановительные условия, где практически отсутствует Fe3+, соответственно образуются ильменит, ульвошпинель, герцинит и другие Fe2+ феррошпинели, пирротин, пирит, Fe2+ силикаты; Fe-металлическая - высоковосстановительные условия, помимо минералов "силикатной" зоны, появляется свободное металлическое железо. В литосфере Земли - это экзотические случаи; видимо, "металлическая" зона находится в основании мантии и в ядре Земли, она типична для лунных пород и метеоритов.

Границы между перечисленными зонами примерно соответствуют буферам гематитмагнетит (НМ), кварц-магнетит-фаялит (QMF), железо-фаялит (IF).

Простая схема образования магнитных минералов в случае системы Fe-Ti-O, резко усложняется с добавлением кремния. Тогда помимо "стандартных" термодинамических соображений значительную роль начинает играть прочность связей (более прочная ковалентная у силикатов по сравнению с ионной у Fe-Ti окислов) и зависящая от них растворимость. Коэффициент разделения железа максимален при переходе из твердой фазы во флюид и из флюида в расплав и более чем в 10 раз меньше в обратном направлении [Кадик и др., 1990]. Следовательно, главное обогащение железом происходит в расплаве и главный перенос - расплавом и в меньшей мере - флюидом. Отсюда наиболее благоприятно образование магнитных минералов, при прочих равных условиях, из расплава [Кадик и др., 1990; Маракушев, Безмен, 1983; Печерский и др., 1975; Mueller and Saxena, 1971]. Железо легко переходит во флюид с низкой pH, который его и переносит. Только обогащенные железом флюиды являются потенциальными источниками повышенной кристаллизации магнитных минералов. Для этого достаточно попасть такому флюиду в относительно окислительные условия с pH>7, что подтверждено экспериментально [Гантимуров, 1982; Кадик и др., 1990; Коржинский, 1967; Летников и др., 1977 и др.].

При высоких давлениях наблюдалась кристаллизация высокотитанистых феррошпинелей в P-T условиях "силикатной" зоны. Так, при давлении 55кбар обнаружены выделения титаномагнетита в кимберлите [Girnis et al., 1995]. Его образование связывается с наличием воды в системе и повышенной летучестью кислорода. В смесях перидотита и базальтов с ильменитом и металлическим железом в интервале давлений 15-50кбар кристаллизовалась высокотитанистая феррошпинель из расплава и замещала реликты ильменита [Геншафт и др., 2000]. В проведенных опытах происходило смешение силикатного и карбонатного (кальцитового) расплавов. Состав шпинели отвечает твердому раствору ульвошпинели и магнезиоферрита (или хлорошпинели). Такая шпинель не является ферримагнетиком, но она может быть источником вторичных ферримагнетиков, образующихся за ее счет в более низкотемпературных и более окислительных условиях. Реальность природных процессов и условий появления подобной высокотитанистой феррошпинели в верхней мантии подтверждается существованием в мантийных условиях силикатных расплавов, обогащенных железом и титаном, подобных по составу изученным в экспереминетах [Гирнис, 1998; Грачев, 2000; Bell et al., 1998; Gibson et al., 2000; Green and Wallace, 1988; Hauri et al., 1993; Schiano et al., 1994 и др.].

Для оценки влияния вторичных изменений на петромагнитную информацию проделана серия опытов по термообработке образцов естественных и искусственных пород в "сухих" и "флюидных" условиях [Печерский и др., 1989]. Выполнены три серии экспериментов:

Влияние давления.

Образцы океанических базальтов выдерживались под давлением 1,5 или 7кбар при 1000oС от 0,5 до 24 час в запаянных ампулах. Летучесть кислорода, судя по геотермобарометру Линдсл [Spencer and Lindsley, 1981], выше буфера Ni-NiO. В ходе термообработки происходит гетерофазное окисление титаномагнетита с образованием ламеллей ильменита и между ними ячеек низкотитанового титаномагнетита. По мере роста давления и/или времени термообработки титаномагнетит в ячейках становится все менее титанистым вплоть до появления магнетита. Кроме того, часть железа уходит за пределы зерен титаномагнетита, что выражается в росте среднего состава зерен от x =0,615 до x =0,65-0,695 и уменьшении общей концентрации титаномагнетита на 20-25% (судя по величинам Js и Tc). Давление и время усиливают эффект изменения зерен титаномагнетита и выноса из них железа. С ростом давления заметно повышается магнитная жесткость (растут Jrs/Js от 0,04-0,08 до 0,15-0,21 и Hcr от 5-10 до 20-25мТ), что связано с ростом напряженного состояния зерен титаномагнетита из-за увеличения их дефектности.

Роль диффузии в процессе изменения титаномагнетита.

Использовалась смесь синтезированного титаномагнетита и природного чистого оливина. Термообработка проб велась при 800o, 1000o и 1150oС в вакууме. На этом примере достаточно простой системы прослеживается процесс переработки зерен титаномагнетита без участия флюида. В ходе термообработки смесей состав титаномагнетита меняется от x =0,1-0,4 до x =0,66-0,9 и появляются зерна ильменита. На контактах крупных зерен оливина и титаномагнетита идет диффузионной вынос железа из титаномагнетита в оливин и привнос магния из оливина в титаномагнетит, что выражается в росте содержания MgO до 8% и TiO 2 до 30% в зернах титаномагнетита и относительном росте содержания железа на 2-27% и спаде MgO на 5-7% в зернах оливина. Привнос железа в оливин не приводит к образованию в нем магнитных минералов.

Влияние на состав и концентрацию магнитных минералов летучести кислорода и состава флюида.
fig03
Рис. 3

Для опытов подобраны три типа образцов таким образом, чтобы наблюдать появление в ходе термообработки новообразованных магнитных минералов за счет диффузии (крупные кристаллы пироксена), переноса вещества флюидом (образец немагнитного пористого пироксенового габбро) и преобразования исходных магнитных минералов (образцы феррогаббро, содержащие до 40% распавшегося титаномагнетита и магнетита). Состав флюида и летучесть кислорода регулировались продуванием печи газовыми смесями разного состава (рис.3). Температура опытов 800o и 950oС.

При термообработке кристалла пироксена независимо от газовой среды, ее fO2 и pH, в течение 200 часов концентрация (Js), состав (Tc) и структурное состояние (Jrs/Js) магнитных минералов не меняется. В образец немагнитного пористого габбро легко проникает газ и в процессе термообработки из него "вымывается" часть железа, что ведет к заметному уменьшению Js (рис.3а).

Подобный результат получен при экспериментальном изучении биметасоматических процессов в системе немагнитный гранодиорит-известняк/доломит [Зарайский и др., 1986]. Во всех вариантах опытов при широких вариациях температуры (400-900oС), давления (0,7-5кбар), состава флюида, его pH (1-13) и fO2 магнетит и другие магнитные минералы in situ не образуются, а лишь за пределами гранодиорита, где резко возрастает pH. В данных опытах средний коэффициент диффузии при 600oС и 0,1кбар равен 3,2 10-4см2 /сек, что примерно в 1014 раз быстрее, чем диффузия железа в титаномагнетите при его гетерофазном окислении [Печерский и др., 1975; Petersen, 1970].

В случае образцов высокомагнитных феррогаббро в "сухих" относительно восстановительных условиях (СО2 +СО) (рис.3б, опыты 1, 2 и 4) сначала происходит гомогенизация исходного распавшегося титаномагнетита, постепенно растворяются ламелли ильменита, Js падает. После 12 часов титаномагнетит близок к гомогенному. После 90 часов идет дальнейшее восстановление - появляется высокотитановый титаномагнетит с Tc =100oС и металлическое железо в виде включений размером менее 1мкм в зернах титаномагнетита, что зафиксировано и микрозондом, и по Tc =760-770oС, и по росту Js (рис.3б). При термообработке в СО2 ("сухие" окислительные условия выше буфера Ni-NiO) вновь происходит гетерофазное окисление титаномагнетита, соответственно, растет Js (рис.3б) и появляется фаза с TcПетромагнетизм континентальной литосферы и природа региональных магнитных аномалий 560oС. Увеличение времени термообработки в СО2 ведет к спаду Js, что в большой степени связано с частичным выносом железа за пределы зерен титаномагнетита.

Во "влажных" условиях резко усиливается процесс уничтожения титаномагнетита (рис.3б). Идет не только диффузионный вынос железа, но и интенсивное разъедание зерен титаномагнетита, в котором заметное участие принимают силикаты. При этом их средний состав по данным микрозондирования близок исходному. Вынесенное железо "оседает" в пределах разъеденных зерен. Добавление в пары воды 3%NH4 OH создает восстановительные для титаномагнетита условия и ведет к появлению металлического железа, соответственно резко возрастает Js (рис.3б). При этом металлическое железо в виде мелких зерен и дендритов находится в пределах контуров крупных зерен титаномагнетита и магнетита, т.е. железо в подавляющей своей массе перемещается незначительно.

Обобщение результатов опытов

1)При высокой температуре как в "сухих" условиях, так и при участии водяного пара новообразование магнитных минералов из породообразующих силикатов не происходит. Новые магнитные минералы образуются при перекристаллизации in situ других Fe-Ti рудных минералов в соответствии с новыми T-fO2 условиями. 2)При высокой температуре как в "сухих" условиях, так и при участии водяного пара разрушение магнетита и титаномагнетита происходит двумя путями: а)диффузионный вынос железа за пределы зерен; б)разъедание зерен флюидом. Ни в одном варианте опытов суммарная концентрация магнитных минералов в образце не возрастала, исходные немагнитные материалы оставались немагнитными. 3)Процесс разъедания и уничтожения титаномагнетита и магнетита в больших пределах не зависит от летучести кислорода. 4)При разрушении титаномагнетита и магнетита основная масса железа практически остается в пределах зерен. Связанное в силикатах железо малоподвижно и не поддается воздействию флюида. 5)Высокое давление принципиально не меняет процесса разрушения титаномагнетита и магнетита, а лишь ускоряет его. 6)Опыты в "сухих" условиях в какой-то мере моделируют условия гранулитового метаморфизма, очень близкого изохимическому, идущему при очень слабом участии флюидов, и, соответственно, при инертном поведении большинства элементов, в том числе Fe [Лутц, 1974; Перчук, 1973; Яковлев, Марковский, 1987; Mueller and Saxena, 1977 и др.]. Следовательно, при гранулитовом метаморфизме не должно происходить существенного выделения железа из силикатов и новообразования за счет него магнитных минералов.

4. Магнитопетрологическая характеристика близповерхностных магматических пород

В большинстве изученных разрезов архейских пород присутствуют бывшие осадочные породы, т.е. значительные части толщ, образующих нижнюю континентальную кору, формировались на поверхности Земли. Более того, спрединговые структуры растяжения составляют основу образования базальтовой коры первичного океана [Йорк, 1993; Маракушев, 1992]. Например, такие архейские комплексы как серые гнейсы и парагнейсы, зеленокаменные пояса являются метаморфизованными вулканогенно-осадочными толщами, дайками, силлами, расслоенными габбро-пироксенитовыми комплексами, т.е. составляют набор, близкий офиолитам, и рассматриваются как разрезы палеоокеанской коры [Зоненшайн и др., 1990; Конди, 1983; Тейлор, Мак-Леннан, 1988]. В постархейское время кора наращивалась "сверху" за счет более позднего магматизма и осадконакопления, коллизии, надвигов блоков и т.п. процессов; новообразованные складчатые пояса испытывали орогенные воздымания, сопровождаемые гранитным магматизмом в глубинных зонах [Зоненшайн и др., 1990; Кропоткин и др., 1987; Маракушев, 1992; Тейлор, Мак-Леннан, 1988]. Соответственно рассмотрим магнетизм близповерхностных магматических пород, в первую очередь тех, что образуют океанскую кору, как основу понимания магнетизма нижней части континентальной земной коры. Во-вторых, нужно оценить влияние глубинного метаморфизма на магнетизм пород нижней континентальной коры.

fig04 fig05 fig06 fig07
Рис. 4 Рис. 5 Рис. 6 Рис. 7

По многочисленным данным главной закономерностью в формировании океанской коры является процесс магматической дифференциации базальтовой магмы, образующейся и накапливающейся под центрами спрединга. В результате дифференциации магмы происходит главное деление пород на немагнитные ранние кумуляты и магнитные продукты кристаллизационной дифференциации. Степень дифференцированности расплава определяет количество в нем железа и, соответственно, кристаллизующегося титаномагнетита - главного носителя магнетизма земной коры. Наглядно этот процесс прослеживается на примере интрузивных габбро Исландии, Зеленого мыса, Камчатки, Курил, Малого Кавказа, Афара, Патынского интрузива [Богатиков и др., 1971; Геншафт и др., 1985; Ермаков, Печерский, 1989; Золотарев и др., 1988; Кашинцев, Печерский, 1983; Лыков и др., 1992; Петромагнитная модель..., 1994; Печерский, Диденко, 1995]. Все породы образуют две группы, как по петрохимическим характеристикам, так и по содержанию магнитных минералов (Js), соответствующие двум магматическим трендам: кумулятивному и магматической дифференциации (рис.4, 5, 6, 7), которые ведут к образованию немагнитной и магнитной групп пород. Процесс идет в условиях близкой к закрытой для кислорода системы, что приводит к увеличению железистости расплава и росту концентрации магнитных минералов в поздних кумулятах и особенно в остаточных расплавах. Даже в относительно малоглубинных очагах базальтовая магма сохраняет низкие значения летучести кислорода, по крайней мере, на 1-2 порядка ниже буфера QMF [Кадик и др., 1990; Sato and Valenza, 1980]. В этих условиях из магмы кристаллизуются высокомагнезиальные и кальциевые минералы - оливин, плагиоклаз, пироксен (Петромагнетизм континентальной литосферы и природа региональных магнитных аномалийхромит), которые и образуют немагнитные кумуляты. Детальные исследования интрузивных массивов и включений в эффузивах Исландии

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: