Xreferat.com » Рефераты по географии » Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

области, его вековая динамика и роль в эволюции ландшафтов" width="23" height="18" align="BOTTOM" border="0" />/Агод)*100%,


где Агод – годовая амплитуда температур (арифметическая разность температур самого теплого и самого холодного месяцев данного года), Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов - географическая широта региона.


Методика определения параметров функционирования геосистем по метеорологическим данным. Исходными данными для вычисления различных параметров климатической динамики являлись средняя температура января и июля, а также годовое количество осадков. На этой основе были вычислены все остальные (производные) гидротермические параметры, как частные, так и комплексные. Для расчетов также использовались приведенные в таблице 2 статистические связи между исходными и производными параметрами [13].

Таблица 2. Формулы для расчетов частных и комплексных ландшафтно-геофизических характеристик по исходным гидротермическим параметрам: tянв, tиюл, rгод [13]

Расчетные формулы

Значения символов

Qс=180,255*tиюль+456

Qс – годовая суммарная радиация;

tиюль – средняя температура июля

Rгод=378,8*tиюль – 6,667*t2июль - 3180

Rгод – годовой радиационный баланс;

tиюль - средняя температура июля

E0=1384 – 161,6*tиюль + 6,245*t2июль

E0 – годовая испаряемость;

tиюль - средняя температура июля

hсн=0,0871*rгод – 5,083*tянв - 80

hсн – высота снежного покрова;

rгод – годовая сумма осадков;

tянв – средняя температура января

I(Буд)=0,0833*tиюль – 0,0015* rгод +0,4

I(Буд) – радиационный индекс сухости Будыко;

tиюль - средняя температура июля;

rгод – годовая сумма осадков

Bперв=0,0139*rгод – 0,2064*tиюль +0,0557*Tвег - 4,22

Bперв –первичная биопродуктивность ландшафтов;

rгод – годовая сумма осадков;

tиюль - средняя температура июля;

Tвег – продолжительность вегетационного периода


Для оценки роли случайных факторов динамики среднегодовых температур и годовых сумм осадков был применен анализ автокорреляции и анализ фрактальной размерности.

Слово «фрактал» употребляется в значении «разрыв», которое указывает на то, что процесс, попадающий под понятие «фрактальность», будучи непрерывным, содержит в себе разрывы, то есть области, в которых значения имеют резкий скачок. Эта модель в общем случае описывает скачкообразные переходы системы из одной локальной области равновесия в другую. Эти переходы могут иметь более или менее регулярный или хаотический характер. Фрактальная размерность системы в отличие от топологической нецелочисленна.

Один из основных методов измерения – метод ящиков. Исходный ряд значений делится пополам и считается число пересечений графика с секущей линией. Затем две, полученные ранее делением пополам графика, части делятся еще на две равные части и снова считается количество пересечений. Далее действие продолжается необходимое количество раз.

Затем по полученным данным определяется размерность D, которая вычисляется по формуле D=log(N)/log(1/r). Размерность определяется из уравнения регрессии, которая графически представлена прямой.

Фрактальная размерность позволяет охарактеризовать различные уровни шума и, соответственно, различный вклад случайных факторов в динамику изучаемой величины (степени случайности процесса) [25]:

0,1 - «черный шум» связывается с турбулентными процессами в очень вязкой среде.

0,5 - «бурый шум» описывает рельеф, целиком определяемый эрозионной системой, близкой к равновесию.

0,9 - «розовый шум» связывается с турбулентными процессами в среде малой вязкости.

1 - «белый шум» описывает чисто случайный нормальный процесс.

Таким образом, рост величины фрактальной размерности показывает степень стохастичности процесса и является критерием энтропии системы (в том числе климатической). Кроме того, фрактальная размерность представляет собой устойчивую статистическую характеристику.

Для установления связи стока с климатическими факторами использовался метод пошаговой регрессии.

Смысл регрессионного анализа состоит в формировании уравнения, связывающего сток с указанными выше факторами. В простейшем случае уравнение имеет вид прямой, а зависимость имеет следующую структуру:


Y=a + b1x1 + b2x2 + … + bnxn , где

Y – зависимая переменная, величина стока;

x1 – xn – принятые в расчет факторы в соответствующих единицах измерения;

а – игрек – пересечение, то есть минимально возможное значение переменной Y при нулевом значении всех факторов;

b1 – bn – регрессионные коэффициенты, знак и величина которых определяет характер и влияние факторов на зависимую переменную. Положительные коэффициенты говорят об усилении стока под влиянием данного фактора, отрицательные – об ослаблении [19].

ГЛАВА 3. Основные особенности регионального климата Рязанской области и его динамики


3.1 Среднемноголетние и экстремальные значения метеорологических величин


Рассмотрим данные характеристики на примере метеостанции Елатьма, измерения которой охватывают период с 1886 по 2003 гг. (отсутствовала информация за 1917-1919, 1996-1998 и частично 1941 гг.).

Среднегодовая температура приземной атмосферы в Елатьме составила 4,310С с коэффициентом вариации 23,2%. Наиболее холодными годами (с температурой менее 2,50С) за историю метеонаблюдений были 1907, 1908, 1942, 1945, 1956, 1969 (все – за счет одновременно зимних и летних сезонов); а также 1976 (холодное лето) и 1987 (суровая зима) (см. приложение 1, 2). Наибольшая повторяемость аномально теплых лет с температурой свыше 5,30С наблюдается в последнее время: это 1989-1991, 1995, 1999-2002 (все как за счет мягкой зимы, так в большинстве случаев высокой температуры в летние месяцы); а также 1975 и 1981 (мягкая зима и теплое сухое лето), 1932 и 1936-1938 (очень сухие годы, к тому же с мягкими зимами), 1906 (теплая зима с высокой повторяемостью циклонов) и 1903 (сухое лето).

Годовая норма осадков в исследуемом регионе составляет 574 мм с коэффициентом вариации 19,5%. Выделяются годы, когда выпадало свыше 750 мм: это 1912, 1952, 1993 (за счет влажного лета); а также 1962, 1980, 1990 (положительные аномалии и зимних, и летних осадков). Экстремально сухими (менее 470 мм/год) были 1890-1892, 1932, 1936-1940 (сухие летние периоды), 1942-1944 (бесснежные зимы), 1946, 1948, 1954, 1957, 1961 (сухие летние месяцы), 1972 (сухая морозная зима и жаркое бездождное лето); близки к ним 1975 (за счет сухого лета) 1988 и 1991 (за счет зимних месяцев) (см. приложение 1, 2).

3.2 Вековые колебания климата и специфика периода глобального потепления (на примере м/с Елатьма)


Изучение данных регулярных метеонаблюдений позволило охарактеризовать с большой подробностью и достоверностью внутривековые изменения климата Земли. В частности, выделено 3 больших периода климатической динамики в Северном полушарии [8] (далее – периоды Будыко): преимущественное потепление (до середины 40-х гг. ХХ в.), относительное похолодание, сопровождавшееся ростом увлажнения в зимние месяцы (до конца 60-х гг.) и новая фаза потепления (с начала 70-х гг. по настоящее время). По мнению Будыко и его единомышленников, данные колебания температуры обусловлены изменениями коэффициента прозрачности атмосферы под влиянием вулканических извержений. При этом наиболее активное снижение прямой радиации наблюдалось в 60-е гг. ХХ в, когда крупные вулканы извергались ежегодно [8,17]. В последние десятилетия рост температуры наблюдается вопреки росту запыленности атмосферы, что данные авторы объясняют накоплением антропогенного СО2. По имеющимся оценкам [20], темпы современного потепления не имеют прецедентов в истории человечества и не сравнимы даже со знаменитой «эпохой викингов».

На основе имеющихся данных метеостанции Елатьма нами были вычислены: среднегодовые значения температуры и количества осадков, амплитуда температуры, сумма активных температур, продолжительность периода с активными температурами и количество осадков за данный период, сумма температур ниже -100C, а также некоторые другие величины. Затем полученные данные подверглись статистической обработке (расчет трендов, фрактальной размерности и др.).

Рассмотрим, как менялась среднегодовая температура на территории Рязанской области за период с 1886 по 2003 год.

Из рисунка 1.3.2 следует, что на протяжении последних 117 лет среднегодовая температура не оставалась постоянной, а менялась, причем четкой закономерности, глядя только на график, выявить нельзя. Лишь после построения полиномиального тренда можно выделить периоды относительного потепления и похолодания. В частности, с конца XIX века началось повышение температуры, которое продолжалось до середины 20-х годов и составило около 0,450C (0,120C/10 лет). Затем произошло некоторое снижение температуры, длившееся примерно до середины 60-х годов. Оно составило 0,30C (0,0960C/10 лет). С конца 60-х годов температура снова начала увеличиваться. Этот процесс продолжается до сих пор. К 2003 году коэффициент линейного тренда составил 0,320C/10 лет (1,550C за весь период).


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 1.3.2. Изменение среднегодовой температуры с 1886 по 2003 год. Линейный (штрихпунктирная линия) и полиномиальный (сплошная черная линия) тренд.


Максимальная среднегодовая температура наблюдалась в 1989 году и составила 6,350C, минимальная – в 1945 году: 2,160C.

Целесообразно провести анализ динамики климатических показателей отдельно по периодам температурной динамики, существование которых доказано М.И. Будыко.

Как показано на рис. 1.3.2, на территории Рязанской области за 1886 – 1946 годы тренд температуры был положительным и составил 0,0310C/10 лет. За период 1947 – 1968 гг. тренд был отрицательным, температура снижалась на 0,0450C/10 лет. В 1969 – 2003 гг. снова наблюдался положительный тренд, составивший 0,40C/10 лет. Это говорит о том, что ситуация в Рязанской области в целом совпадает с общемировой тенденцией изменения температуры.

За период с 1886 по 2003 год наблюдалась общая тенденция к увеличению температуры. В целом она возросла на 10C по сравнению с началом XX века. По миру в среднем этот показатель составляет 0,60C. Разница объясняется неравномерностью роста температуры на материках и океанах. Среднемировой показатель учитывает изменение температуры и в Южном – более океаническом – полушарии.

Количество осадков на территории Рязанской области за период 1886 – 2003 возросло более чем на 100 мм (коэффициент линейного тренда составил 8,4 мм/10 лет). Проанализируем изменение количества осадков по тем же периодам времени, что и температуру. Однако четкой зависимости между количеством осадков и температурой нет, то есть увеличение температуры может приводить как к увеличению количества осадков, так и его уменьшению (приложение 4). Скорее всего, это связано с тем, что на осадки, кроме температуры, оказывают влияние и другие факторы, которые зачастую являются более важными, чем температура (местное испарение, температурная стратификация атмосферы, формирующаяся под влиянием местных условий и др.).

За период с 1886 по 1946 гг. тренд осадков был отрицательным и составил в среднем 16,7 мм/10 лет, с 1947 по 1968 гг. – положительным: количество осадков увеличивалось в этот период на 22,7 мм/10 лет. В течение 1969 – 2003 гг. тренд также был положительным: 32,4 мм/10 лет.

Максимальное количество осадков за этот период выпало в 1990 году и составило 885 мм, а минимальное - в 1937 году: 356,1 мм (рис.2.3.2).

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис 2.3.2. Среднегодовое количество осадков за 1886 – 2003 годы. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренды.


Рассмотрим подробнее результаты, полученные при расчете тренда температуры и осадков каждого месяца за период в десять лет (приложение 4). На основе полученных данных можно сделать определенный вывод о том, что между температурой и осадками нет определенной закономерности, они меняются независимо друг от друга. Однако, при видимой хаотичности процессов, некоторые десятилетия характеризуются довольно упорядоченным ходом температуры и осадков. Это такие периоды, как 1961 – 1970, в течение которого температура и осадки характеризовались обратной зависимостью, кроме сентября и декабря, когда снижение температуры приводило к уменьшению количества осадков; 1971 – 1980, когда во все месяцы, кроме последних двух весенних и последних двух осенних, температура и количество осадков также характеризовались обратной зависимостью, а весной и зимой снижение температуры приводило к уменьшению количества осадков. Следует выделить и последнее десятилетие XX века, на протяжении которого в мае, июне и июле, а также осенью уменьшение температуры приводило к росту количества осадков и наоборот. В остальные месяцы наблюдалась прямая зависимость.

Таким образом, прогноз осадков более сложен, чем прогноз температуры, так как на увлажнение влияет большее число факторов, значительная часть которых не может быть адекватно учтена.

Рассмотрим теперь, как менялась годовая амплитуда температуры (рис. 3.3.2, приложение 1).


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 3.3.2. Изменение годовой амплитуды температур. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренды.


Сопоставляя рис. 1.3.2 и 3.3.2, можно увидеть, что период повышения температуры совпадает с периодом понижения амплитуды и лишь за последние 10 лет рост температуры сопровождается ростом амплитуды. Такая противоположность связана с повышением зимних и некоторым снижением летних температур, что сглаживает контраст между сезонами. В целом, среднегодовая амплитуда снизилась на 30C.

Рассмотрим также амплитуду среднесуточных температур за разные годы (разность температур самого холодного и самого теплого дня в году).

Как видно из рисунка 4.3.2 амплитуда среднесуточных температур снизилась по сравнению с 1886 годом на 2,50C, что почти совпадает с величиной снижения среднегодовой амплитуды. В целом, между данными величинами наблюдается четко выраженная прямая зависимость.

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 4.3.2. Амплитуда среднесуточных температур. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренды.


Снижение амплитуды самого теплого и самого холодного дня в году связано с теми же факторами, что и снижение среднегодовой амплитуды.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 5.3.2. Изменение коэффициента Хромова. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренд.


На рисунке 5.3.2 изображен график изменения коэффициента, или индекса континентальности, Хромова, который указывает на соотношение влияний, оказываемых континентом и океаном на годовую амплитуду температуры воздуха в конкретном месте, в данном случае – в Рязанской области (см. также приложение 1). Этот график полностью идентичен графику годовой амплитуды, так как именно от нее зависит степень континентальности климата. Из-за снижения амплитуды температуры континентальность климата также уменьшилась и, как следствие, коэффициент Хромова снизился на 1,5% по сравнению с 1886 годом. В течение периода 1886 – 1946 гг., который характеризовался ростом среднеглобальных температур, на территории Рязанской области преобладала тенденция снижения коэффициента Хромова: примерно на 0,01%/10 лет. Далее с 1947 по 1968 гг. тренд коэффициента был положительный и составлял в среднем 0,02%/10 лет. За последний промежуток времени с 1969 по 2003 гг. произошло снижение коэффициента Хромова на 0,44%/10 лет. Минимальное значение коэффициента Хромова наблюдалось в 1993 году (в период последнего «глобального потепления») и составило 81,96%, максимальное значение – в 1956 году (на фоне снижения среднеглобальной температуры, имевшего место в тот период) и равнялось 89,48%. Снижение коэффициента Хромова говорит о том, что происходит сглаживание контрастности между материком и океаном и сезонами года. Наиболее интенсивное уменьшение происходит за последние годы. Это указывает на то, что интенсивность процессов, влияющих на снижение контрастности температур, значительно возросла.

Можно рассмотреть еще некоторые параметры, которые также доказывают, что повышение температуры происходит в основном за счет увеличения зимних температур. В частности, нами была рассчитана сумма температур ниже -100C, а также продолжительность периода с такими температурами и количество осадков за этот период (см. приложение 3). Сравнивая рисунок 1.3.2 и 6.3.2, можно увидеть, что полиномиальный тренд температуры и суммы температур ниже -100C практически совпадают, то есть повышение в положительную сторону суммы температур ниже -100C приводит к росту среднегодовой температуры и наоборот.

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 6.3.2. Сумма температур ниже -100C. Полиномиальный (сплошная черная линия) и линейный тренд (пунктирная линия).


Линейный тренд указывает на то, что сумма температур ниже -100C уменьшилась по модулю за весь рассматриваемый промежуток на 2250C, что также способствовало росту среднегодовой температуры, что и наблюдается в настоящее время.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 7.3.2. Продолжительность периода с температурами ниже -100 и линейный тренд.


Длительность периода с температурами ниже -100C уменьшилась за весь период на 18 дней (рис.7.3.2), что говорит о том, что температура в холодное время года стала реже опускаться ниже -100C.

Количество осадков за этот период снизилось (рис 8.3.2) примерно на 10 мм.

Возможно, уменьшение количества осадков связано с тем, что в связи с ростом зимних температур, снизилась контрастность между океаном и материком, однако этому противоречит увеличение циклональной активности, которая также связана с контрастами температур на материках и океанах.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 8.3.2. Количество осадков за период с температурами ниже -100 и линейный тренд.


Это еще раз подчеркивает, что на осадки оказывает влияние большее количество факторов по сравнению с температурой.

Рассмотрим также, как менялись суммы активных температур (арифметическая сумма среднесуточных температур свыше +100С) и температур выше +150C.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов


Рис. 9.3.2. Сумма активных температур. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренд.

Сумма активных температур за последние 117 лет снизилась примерно на 500C (рис. 9.3.2, приложение 5).

Скорее всего, это объясняется понижением летних температур за счет повышенной циклонической активности. Это доказывает и увеличение количества осадков за этот период примерно на 15 мм (рис. 10.3.2).

Можно проследить связь между суммой активных температур и коэффициентом Хромова. До середины XX века существовала однозначная прямая связь между суммой активных температур и коэффициентом Хромова: период снижения коэффициента Хромова сопровождался периодом снижения суммы активных температур и наоборот. Это связано с усилением взаимодействия океана и континента, в частности с увеличением циклонической активности в летний период. С середины XX века связь стала несколько менее определенной, в частности, в первой половине 60-х годов наблюдалось снижение суммы активных температур при высокой величине коэффициента Хромова из-за снижения поступления прямой радиации вследствие активизации вулканической деятельности [8] и общего снижения летних температур на континентах. В 80-е годы на фоне однозначного снижения коэффициента Хромова имел место выраженный рост суммы активных температур.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 10.3.2. Количество осадков за период активных температур. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренд.

Длительность периода с активными температурами в 1995 году возросла по сравнению с 1886 годом на 3 дня.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 11.3.2. Продолжительность периода с активными температурами и линейный тренд.


Сумма температур выше +150C также снизилась за период с 1886 по 2003 год на 1000C (рис.12.3.2, приложение 6). Вероятно, что это связано с теми же факторами, которые влияют и на сумму активных температур, причем тенденция к росту данного параметра в последние 30-35 лет еще не сказалась на характере динамики за весь рассмотренный период времени.


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Рис. 12.3.2. Сумма температур выше +150C. Полиномиальный (сплошная черная линия) и линейный (пунктирная линия) тренд.


Таким образом, современная климатическая динамика в Рязанском регионе характеризуется рядом существенных особенностей, не имеющих аналогов в прошлые десятилетия регулярных метеонаблюдений. В первую очередь это касается устойчивого роста температуры, в основном за счет зимних месяцев, а также роста увлажненности.

О значимости современных климатических изменений может свидетельствовать и вариационный анализ (приложение 7). Нами были проанализированы среднегодовая и зимняя температуры. В стабильных условиях среды фиксируется колоколообразная форма распределения любого параметра. При этом доказано, что такая форма распределения весьма консервативна и ее изменения свидетельствуют о кардинальных изменениях процесса.

Как видно из приложения 7 сейчас формируется новый «класс типичности» среднегодовых температур (выше +5,510С), не имевших прецедентов в прошлом, что на 1,50С больше средней величины, характерной для всего XX века. Потепление происходит в основном за счет температур зимних месяцев.


3.3 Пространственная неоднородность климата в пределах Рязанской области и ее физико-географические факторы


Для оценки пространственной неоднородности климатических параметров использовались данные, полученные метеостанциями. Наиболее длинные ряды содержат сведения, начиная с 1886 года (Елатьма). К сожалению, другие метеостанции обладают меньшими рядами сведений (в частности, Павелец – начиная с 1936 года). При этом в существующих рядах имеются разрывы в наблюдениях. В результате нами было построено несколько картосхем. Сравнение картографических данных середины XX века и начала XXI века показало, что современная климатическая обстановка отличается рядом особенностей.

Сопоставление полученных данных со средними картами второй половины ХХ в. (опубликованы, в частности, в [3,4]), показало, что конфигурация изотерм в целом не изменилась, и они имеют субширотное простирание, что связано с закономерным возрастанием количества солнечной радиации с севера на юг. Однако на юго-западе Рязанской области наблюдается понижение среднегодовых температур (рис. 1.3.3). Это связано с тем, что юго-запад региона – участок Среднерусской возвышенности – приподнят над остальной территорией. Относительно пониженная среднегодовая температура этого участка выражена в основном за счет зимнего периода, когда фактор снижения температуры с высотой – в том числе при адиабатическом охлаждении воздуха атлантических циклонов при подъеме – оказывается более существенным в связи с более активным воздухообменом с Атлантикой (рис. 1.3.3(б)).


Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтовРегиональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

а) б)

Рис. 1.3.3. Картосхемы среднегодовой температуры воздуха середины XX века (а) и начала XXI века (2001 – 2003гг) (б)


Простирание январских изотерм в субмеридиональном направлении – в связи с адвекцией тепла с Атлантического океана – в целом сохраняется и в начале ХХI в. (рис. 2.3.3).

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтовРегиональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтова) б)

Рис. 2.3.3. Картосхема температуры января середины XX века (а) и начала XXI века (2001 – 2003 гг) (б).


При этом зимой наблюдается повышение температуры с юго-востока на северо-запад до окрестностей Рязани, где локализован региональный максимум зимней температуры, обусловленный тем, что адвекция на данном участке территории области проявляется наиболее интенсивно. Далее к северу температура вновь снижается – уже в соответствии с зональными закономерностями. Необходимо отметить, что по сравнению с серединой прошлого столетия температуры января увеличились примерно на 50С, хотя существенных различий в конфигурации изотерм в целом не наблюдается. Это подтверждает, что пространственная картина метеопараметров значительно устойчивее их средних величин и сохраняется даже при принципиальных изменениях климата.

Летние температуры в 2001-2003 годы оказались выше среднемноголетних на 2-30С. Данная тенденция характерна лишь для первых нескольких лет ХХI в. и не является устойчивой. Ранее на этапе «глобального потепления» наблюдался обратный процесс – процесс снижения летних температур.

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтовРегиональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

а) б)

Рис.3.3.3. Картосхемы температуры июля середины XX века (а) и начала XXI века (2001 – 2003 гг) (б).


Сохраняется субширотное простирание июльских изотерм, при этом они проходят практически перпендикулярно преобладающим северо-западным ветрам (рис. 3.3.3). Тем

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: