Xreferat.com » Рефераты по геологии » Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей

Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования


Курсовая работа

по курсу «Подземная гидромеханика»

тема: «Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей»


г. Тюмень 2010


Содержание


Введение…………………………………………………………..……………….3

1. Особенности разработки сложнопостроенных нефтегазовых и газоконденсатнонефтяных залежей………………………………......………….5

2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей……........……7

Сущность проблемы конусообразования…………………………............7

Моделирование процесса статического конусообразования…………..11

2.2.1 Общие представления..................................................................................11

2.2.2 Математическая модель статического конусообразования Маскета-Чарного. Методы расчета предельных депрессий и дебитов несовершенных скважин...................................................................................................................13

Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой…………………………………………………….......................................17

2.3.1 Методика расчета предельных безводных и безгазовых дебитов, основанная на гидравлической теории безнапорного притока.........................18

2.3.2 Потенциометрический метод расчета предельных безводных и безгазовых дебитов................................................................................................22

2.3.3 Методика расчета предельных безводных и безгазовых дебитов Курбанова-Садчикова, основанная на теории напорного притока...................23

2.3.4.Уточненная методика расчета предельных безводных и безгазовых дебитов....................................................................................................................24

Заключение……………………………………………………………………….34

Список литературы…………………………………………………………........35


Введение


В настоящее время большинство разрабатываемых месторождений нефти и газа относятся к категории сложнопостроенных. Специфика и основные сложности разработки таких залежей определяются условиями совместного залегания, в пласте нефти и газа, резко различающиеся по компонентному составу и физическим свойствам, а также наличием подошвенной воды. При разработке нефтегазовых и газоконденсатнонефтяных залежей существенным является очередность выработки запасов нефти и газа. Практически возможно осуществление следующих основных вариантов: опережающая разработка нефтяной зоны, одновременная разработка нефтяной зоны и газовой шапки и опережающая разработка газовой шапки. Любая из этих систем накладывает ограничения на условия извлечения одного из видов углеводородного сырья - нефти, газоконденсата или газа. Наиболее типичное осложнение при разработке нефтегазовых залежей - это внедрение нефти в газовую шапку, прорыв подошвенной воды или верхнего газа в нефтяную зону пласта.

Целью предлагаемого учебного пособия является рассмотрение вопросов моделирования процессов статического и динамического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей с подошвенной водой. Особенности разработки сложнопостроенных месторождений нефти и газа изложены в первом разделе пособия.

Для осуществления безводной и безгазовой эксплуатации скважин, дренирующих нефтегазовые залежи с подошвенной водой, необходимо определить предельные одновременно безводные и безгазовые дебиты, а также соответствующие им предельные депрессии. Рассмотрению этих задач на конкретных примерах с использованием различных методических подходов посвящен второй раздел пособия.

В рамках проблемы динамического конусообразования в третьем разделе работы излагаются подходы к расчету времени безводной (безгазовой) эксплуатации скважин, показана методика прогнозирования продвижения границы раздела нефть-вода или нефть-газ, а также рассматривается расчет коэффициента нефтеотдачи за безводный (безгазовый) период.

Настоящее пособие дополнено приложениями, в которых отражен цифровой, табличный и графический материал, предлагаемый для использования на занятиях студентов по курсу «Гидрогазодинамика», а также в практике нефтегазодобывающих предприятий.


1. Особенности разработки сложнопостроенных нефтегазовых и газоконденсатнонефтяных залежей


Извлечете запасов из газонефтяных и газоконденсатнонефтяных залежей обычно считается более сложным, чем разработка нефтяных месторождений. Специфические особенности указанных залежей (сложное геологическое строение, наличие в пласте нефти, газа, газоконденсата и воды) в определенной степени усложняют комплекс проблем, связанных с их разработкой. Это особенно характерно для крупных газонефтяных месторождений Западной Сибири (Самотлорское, Федоровское, Лянторское, Варьеганское и др.), в том числе для района Сургутского свода, где 48% текущих запасов нефти разрабатываемых месторождений приходится на долю нефтегазовых залежей.

Как показывают анализы, в связи с высокой выработкой более простых по геологическому строению залежей нефти перспектива развития нефтеотдачи в этом районе будет связана прежде всего с освоением слож-нопостроенных газонефтяных залежей.

Основные запасы нефти и газа газонефтяных залежей Сургутского района сосредоточены на двух объектах - Лянторском и Федоровском месторождениях, которые характеризуются сложным геологическим строением, малыми толщинами нефтяного пласта и большой долей порового объема нефтенасыщенного пласта. Извлечение этих запасов с наибольшей нефтеотдачей и наименьшими затратами является одной, из основных проблем разработки месторождений указанного типа.

Задачам рациональной разработки газоконденсатных (ГКЗ), газоконденсатнонефтяных (ГКНЗ) и нефтегазовых залежей (НГЗ) с подошвенной водой посвящен ряд работ как зарубежных, так и отечественных исследователей

В результате многолетних исследований, связанных с разработкой нефтегазовых залежей и нефтяных оторочек с верхним газом и подошвенной водой, дано обобщение мирового опыта разработки указанных залежей, разработана теория проектирования с учетом геологогидрогазодинамических особенностей НГЗ и ГКНГЗ и их классификация, рассмотрены актуальные проблемы проектирования и рациональной их разработки этих объектов.

Основные сложности при разработке нефтегазовых залежей связаны с технологическими трудностями извлечения нефти, зависящими от режима их разработки. При этом в основном проявляют себя режимы растворенного газа и упруговодонапорный; первый имеет главенствующее значение и определяет конечный коэффициент нефтеотдачи, в большинстве случаев несущественный. В связи с увеличением мирового спроса на нефть и истощением запасов крупных нефтяных месторождений возрос интерес к разработке нефтегазовых залежей и нефтяных оторочек. Как известно, рациональным способом извлечения запасов нефтяной оторочки считается опережающая выработка ее с сохранением энергии газовой шапки. Однако, как показывает мировая практика, иногда полезен способ одновременного извлечения запасов нефти и газа из нефтегазовых залежей с сохранением неподвижности газонефтяного контакта.

Определенный опыт разработки нефтегазовых залежей имеется и в нашей стране. Например, после осуществления ППД и барьерного заводнения на Бобриковской нефтегазовой залежи Коробковского месторождения ожидалось увеличение коэффициента нефтеотдачи до 55% при одновременном извлечении нефти и газа. Применение барьерного заводнения и уплотнение сетки скважин по пласту Б1 Бахметьевской площади дало увеличение годовых отборов нефти до 20-30%. Подобные результаты разработки нефтегазовых и газоконденсатнонефтяных залежей приведены в [47-53].


2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей


2.1 Сущность проблемы конусообразования


Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологически однородных пластах. Преждевременное обводнение или загазовывание скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.

Большое практическое значение имеет осуществление рациональной разработки газоконденсатнонефтяных и нефтегазовых залежей с водонапорным режимом, т.е. режимом, когда основной энергией, за счет которой происходит движение пластовой жидкости к забоям скважин, является энергия напора воды. Водонапорный режим характеризуется тем, что при стабилизации пластового давления весь отбор пластовой жидкости замещается поступлением воды в продуктивную часть коллектора. Происходящее при этом продвижение водонефтяного контакта (ВНК) приводит к тому, что скважины, находящиеся в водонефтяной зоне, обводняются, и добыча нефти сопровождается непрерывным ростом содержания воды4 Обводнение скважин приводит к росту себестоимости нефти и ухудшению показателей разработки. Так как конус характеризует локальное продвижение поверхности вода-нефть или газ-нефть, то, рассматривая режим работы отдельной скважины, необходимо проводить различие между продвижением краевых вод и напором подошвенной воды. В первом случае продвижение воды происходит вдоль напластования, что характерно для относительно тонких продуктивных пластов, залегающих с заметным углом падения. Второй случай характерен для пластов, залегающих с малым углом наклона. Так как в природе такие крайние случаи наблюдаются редко, то условно можно выделить три типа притока нефти при водонапорном режиме:

- нефть поступает к скважинам в основном под напором подошвенной воды, краевые воды малоактивны, то есть скорость продвижения границы раздела нефть-вода превышает скорость, с которой происходит стягивание контура нефтеносности;

- вытеснение нефти происходит за счет продвижения краевых вод вдоль напластования. Подошвенная вода при этом малоактивна, т.е. скорость продвижения контура водоносности в несколько раз больше скорости подъема поверхности подошвенной воды;

- приток нефти к скважинам осуществляется как за счет продвижения контурных, так и подошвенных вод, а также и за счет продвижения газонефтяного контакта (ГНК) при наличии газовой шапки.

Последний вариант наиболее сложен, хотя приближенно оценить происходящий при этом процесс можно, сведя его к одному из первых двух. Качественная сторона процесса конусообразования, т.е. форма поверхности раздела вода-нефть или нефть-газ не зависит от того, является ли подошвенная вода движущим фактором или она малоактивна. Но при этом качественном подобии физические причины, вызывающие образование конуса, различны.

В случае напора подошвенной воды ввиду высокого пластового давления в водоносной области и пониженного давления на забое нефтяной скважины граница раздела испытывает значительный перепад давления. При этом линии тока будут ортогональны исходной поверхности вода-нефть и направлены вверх (рис.2.1а). Приближаясь к забою скважины, на уровне вскрытой толщины пласта они начинают отклоняться. Вытеснение нефти происходит за счет продвижения ВНК, сопровождаемого образованием конуса воды. Причина образования конусообразной формы поверхности раздела вода-нефть (нефть-газ или газ-вода) заключается в том, что величина вертикальной составляющей скорости продвижения ВНК принимает максимальное значение вдоль оси скважины. Качественно подобная форма поверхности раздела образуется и в случае, когда подошвенная вода не принимает участие в вытеснении или она малоактивна. При этом поток нефти (газа) к несовершенной скважине на расстоянии, большем одного-двух значений продуктивной толщины от ее оси (внешняя зона), можно считать плоскорадиальным, где линии тока располагаются параллельно кровле и подошве пласта.

Внутренняя зона характеризуется пространственным притоком, где линии тока искривлены (рис.2.16). В результате такого искривления линий тока появляется вертикальная составляющая скорости фильтрации, значение которой возрастает с приближением к оси скважины. Наличие вертикальной составляющей приводит к подтягиванию поверхности раздела вода-нефть или газ-нефть, а ее уменьшение с увеличением расстояния от оси скважины обусловливает образование конусообразной формы границы раздела Конус подошвенной воды или газа в данном случае может находиться в статическом равновесии и не оказывать существенного влияния на приток нефти к скважине. Равновесие характеризуется предельным дебитом или депрессией, т.е. дебитом, превышение которого приводит к прорыву воды (газа) в скважину. В случае, если дебит скважины не превышает предельного значения, то прорыв воды (газа) произойдет лишь при достижении вершиной конуса интервала перфорации за счет общего поднятия ВНК или опускания ГНК вследствие истощения залежи. Величина предельного дебита зависит от физических свойств пласта и жидкостей и относительного вскрытия продуктивной части пласта. В пластах с малой проницаемостью вдоль напластования реализация предельных дебитов ввиду их малости экономически невыгодна. Экономически невыгодна эксплуатация скважин и с максимально возможным (потенциальным) дебитом, т.к. вода или верхний газ мгновенно прорываются в скважину и начинается совместный приток нефти и воды или нефти и газа.


Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей

Рис.2.1(a). Схема линий тока, обусловленная напором подошвенной воды


Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей


Очевидно, рабочие дебита должны находиться в интервале от предельного до потенциального. Следовательно, такая скважина будет характеризоваться временем безводной или безгазовой эксплуатации.

Изучение существующих работ, связанных с разработкой указанных залежей, показывает, что эта проблема находится в стадии интенсивного теоретического и промыслового исследования.


2.2 Моделирование процесса статического конусообразования


2.2.1 Общие представления

Во многих случаях при разработке нефтегазовых залежей (НГЗ) вскрываются газоводонефтяные зоны или нефтяные оторочки при разработке газоконденсатнонефтяных залежей (ГКНЗ) с подошвенной водой. Разработка таких залежей обусловливается следующими характерными особенностями, полной гидродинамической связью нефтяной залежи с газовой шапкой и водоносным пластом и вероятной подвижностью газонефтяного и водонефтяного контактов в окрестности скважин в процессе разработки залежи; практически неподвижностью контуров газоносности и нефтеносности в пласте; равномерным распределением пластовой энергии по площади нефтеносности; равенством начального пластового давления и давления насыщения; относительной близостью расположения к забоям скважин водонефтяного и газонефтяного контактов при дренировании нефтяной оторочки; неустойчивостью процесса вытеснения нефти газом, приводящей к быстрому прорыву газа к забоям добывающих скважин и их загазованности и в конечном счете к значительной потере пластовой энергии и снижению нефтеотдачи; возможностью проявления ретроградной конденсации из-за снижения давления в газонасыщенной зоне пласта, предопределяющей пластовые потери конденсата; трудностью регулирования перемещением ГНК и ВНК и др.

Как видим, указанные особенности требуют создания технологии разработки НГЗ и нефтяных оторочек, совершенно отличных от технологии разработки как нефтяных залежей обычного типа, так и нефтегазовых залежей с краевой водой.

При разработке НГЗ и ГКНЗ с подошвенной водой темп отбора нефти обусловливается деформацией контактов и прорывом газа и воды к забоям скважин. При этом весьма важным параметром при установлении режима работы скважин и прогнозировании технологических показателей разработки является анизотропия пласта [ 1 ], обоснование которой необходимо для каждой конкретной залежи. М. Маскет также указывает [ 1 ], что анизотропность коллектора существенно влияет на эффективность размещения скважин. Низкая проницаемость по вертикали препятствует быстрому поднятию вершины конуса и способствует выполаживанию поверхности раз дела вода-нефть. Высокая проницаемость по вертикали (малая анизотропия пласта) способствует быстрому продвижению вершины конуса к забою скважины, что обусловливает концентрированную деформацию поверхности раздела вблизи скважины с низким коэффициентом охвата вытеснения нефти подошвенной водой. Поэтому М. Маскет утверждает, что критерием размещения скважин с напором подошвенной воды должен быть параметр размещения, представляющий собой отношение половины расстояния между скважинами Ro к произведению толщины продуктивного пласта h0 и анизотропии ж*, т.е.


p0=Ro/ж*h0.


Эффективность вытеснения нефти, очевидно, может быть улучшена в условиях непрерывной эксплуатации скважин при малых дебетах, когда снижение забойного давления не на много превосходит напор столба жидкости P=hH(ρB-ρH)g, а также при периодической эксплуатации скважин с продолжительными интервалами ее закрытия, приводящей к опусканию и выполаживанию возникшей конусообразной поверхности раздела вода-нефть или газ-нефть под действием сил тяжести.


2.2.2 Математическая модель статического конусообразования Маскета-Чарного. Методы расчета предельных депрессий и дебитов несовершенных скважин

Модель предполагает установившийся приток нефти или газа к открытому забою скважины, частично вскрывшей однородный или однородно-анизотропный по проницаемости ограниченный горизонтальный пласт постоянной толщины, подстилающийся подошвенной водой. На контуре пласта и на забое скважины поддерживается постоянное давление, фильтрация происходит по закону Дарси, капиллярными силами пренебрегается, вытеснение нефти или газа водой предполагается поршневое. Решение для распределения потенциала в пласте, вызванного работой несовершенной скважины, принимается для условий невозмущенной границы раздела двух жидкостей, т.е. первоначальный ВНК и ГНК предполагаются непроницаемыми.

При эксплуатации нефтяных или газовых скважин с подошвенной водой, а также при дренировании нефтяной оторочки в определенных условиях проявляется тенденция к деформированию поверхности раздела двух фаз, которая принимает холмообразный вид, образуя конусы воды, конусы нефти или конусы воды и газа. При некоторых установившихся условиях отбора соответствующие деформированные поверхности раздела находятся в равновесии и не оказывают существенного влияния на приток добываемого флюида к скважине. Если же превысить депрессию и, соответственно, отбор нефти или газа сверх некоторой предельной величины, то вода прорвется в скважину, что может привести к ее прогрессирующему обводнению, а при дренировании нефтяной оторочки возможен прорыв подошвенной воды и верхнего газа. Таким образом, существует предельная высота вершины конуса, которой соответствуют предельная депрессия и безводный или безгазовый дебит.

Точной теории конусообразования ввиду сложности процессов не имеется. Приближенная теория этого явления, основанная М.Маскетом и И.А.Чарным [1,2] и позволяющая рассчитывать предельные дебиты и депрессии, исходит из допущения, что отклонение поверхности раздела двух фаз от первоначальной плоской формы не влияет на распределение потенциала скорости фильтрации в нефтяной (газовой) части пласта.

Дальнейшее развитие приближенной теории устойчивых конусов Маскета-Чарного и ее практическое использование нашли отражение в работах как отечественных, так и зарубежных исследователей (Б.Б.Лапук, Б.Е Сомов, А.Л.Брудно, Д.А.Эфрос, Р.Г.Аллахвердиева, А.К.Курбанов, П.Б.Садчиков, А.П.Телков, Ю.И.Стклянин, З.С.Алиев, А.П.Власенко, Е.С.Абрамов, С.Н.Закиров, Р.Чаней, Д.Сирси и др.) Здесь изложен более универсальный метод решения задач конусообразования, основанный на двухзонной схеме притока.

Предельный безводный дебит нефтяной скважины определяется по формуле


Q1 = Q0(ρ0,Ђ); Q0 = 2πKrh02 Δρ; Δρ=ρB-ρr, (2.1)


где q(ρ0,Ђ) - безразмерный безводный дебит, определяемый по соответствующим графикам или таблицам (Прил.1) для параметра ρ0≤1 [79,82] и по графикам рис.2.3 для ρ0>1. Безразмерная ордината конуса ξ0=z0/h0 для ρ0>1 определяется по графикам рис.2.4, для ρ0<1 - по таблицам (см. Прил.1).


Для безразмерной депрессии при р0> 1 имеется формула:


ΔPпр = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей = (ε0+Δε)q(ρ0,Ђ), (2.2)


где


ε0=Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей [ln - Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей - ψ(ρ0,Ђ)] ; (2.3)


ψ(ρ0,Ђ) - некоторая функция, определяемая по таблице (Прил.2). Для Де построены графики (рис.2.5). Возможно другое, наиболее полное представление для функции фильтрационных сопротивлений


ε0=lnМоделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей+ S; S = C1 + C2 + C0, (2.4)


Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей

Рис.2.2.Двухзонная схема притока к несовершенной скважине при статическом равновесии границы раздела


Ф0, Фс, Фс' - потенциалы скорости фильтрации на соответственно условном контуре питания радиуса R0, контуре скважины радиусом гс, условном контуре внутренней зоны притока радиусом R0' =h0; У1, У2 - расстояние от точки конуса с координатами (R0,h) до соответственно вершины конуса и ВНК; Z0 - ордината вершины конуса; b - величина вскрытия пласта


Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей


где С1 С2 и Со - добавочные фильтрационные сопротивления, обусловленные различными видами несовершенства скважины и определяемые по соответствующим формулам или графическим зависимостям [ 2-5 ].

Уравнение границы раздела (профиль конуса воды или газа) согласно [ 3,5 ], описывается уравнением


ř = r/R0 = ехр[Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ] . (2.5)


2.3 Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой


При разработке нефтегазовых залежей с подошвенной водой или нефтяных оторочек возникают сложные гидродинамические задачи по определению предельных безводных и безгазовых дебитов, предельных депрессий, наивыгоднейшего интервала вскрытия нефтяной оторочки относительно ГНК и ВНК, безводного периода, безводной нефтеотдачи на момент полного обводнения или загазовывания скважин. Приближенная теория стационарных конусов применительно к подгазовым нефтяным залежам с подошвенной водой была впервые разработана М.Маскетом и И. А.Чарным. Дальнейшее развитие она получила в работах А.К.Курбанова, П.Б.Садчикова, А.П.Телкова, Ю.И.Стклянина, Р.Чанея, И.Лукерена и др. Формулы Мейера, Гардера и П.М.Шульги для определения предельного безводного и безгазового дебитов исходят из теории безнапорного притока к несовершенной скважине и дают весьма приближенные завышенные против действительных предельных значения, т.к. они фиксируют дебиты уже в момент прорыва газа или воды. Рассмотрим приближенные, но более обоснованные методы.


2.3.1 Методика расчета предельных безводных и безгазовых дебитов, основанная на гидравлической теории безнапорного притока

Схема одновременного существования газового и водяного конусов показана на рис.2.6. Пусть Нr, Нв, Нн есть гидравлические напоры в газовой, водяной и нефтяной зонах соответственно. Рr, Рв и Рн - пластовые давления в указанных зонах, а Р' - давление в некоторой точке на поверхности раздела газ-нефть и вода-нефть (см.рис.2.6), ρн, ρв, и ρr- плотности нефти, воды и газа соответственно. Тогда относительно точки N можно записать следующее выражение


Hr= Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей; HH=Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей . (2.6)


Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей


Если эту точку переместить на контур скважины, то в соответствии с обозначениями на схеме имеем z=(h-b)+hc. Решая совместно два уравнения, исключая Р1 и пренебрегая капиллярным давлением РК=РН-РГ, получаем


HH = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей + (h - b+he)Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; Δρ1 = ρH - ρr . (2.7)


Аналогично для точки М, перемещенной на контур скважины, получаем


Нв = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей - (h-b) Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; Δρ2 = ρв – ρн


Если поместить точки N и М на контур пласта, то получаем, соответственно, выражения


Нн = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей + Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; Hн = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей (2.8)


из которых следует


Нгρв = Нвρв – hΔρ1 (2.9)


Решая совместно (2.7), (2.8) и (2.9), находим нижнее положение интервала перфорации, обеспечивающее критическое значение безводного и безгазового дебита при заданном значении hc


b = h0 - (h-hc) Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; Δρ3 = ρв-ρr. (2.10)


Определим ординату z0 нейтральной линии тока. Уравнения для напоров (2.7) и (2.8) относительно плоскости z0 (см.рис.2.6) записываются в виде:


Hн = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей + Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; Нн = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей - Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей (2.11)


Решая совместно (2.11) и (2.9), получаем


z0 = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей . (2.12)


Расстояние bi от нижних отверстий перфорации до нейтральной линии тока, как это следует из схемы, есгь


b1 = z0-(h - b) =Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей. (2.13)


Таким образом, определив ординату нейтральной линии тока (горизонтальную плоскость) и заменив ее непроницаемой жесткой перегородкой, формально получаем два пласта.

Дифференциальное уравнение безнапорного притока для верхнего пласта есть


Q1 = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей . (2.14)


Разделяя переменные и интегрируя (2.14) в пределах по r от rс до R0 и по z от z2 до z1, где


z1 = h-z0;


z2 = hc-Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей (2.15)


получаем


Q1 Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей(h2-hc2)(l- Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей)2 . (2.16)


Интегрируя уравнение для нижнего пласта, получаем


Q2=Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей r(z0-z)Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей ; (2.17)


в пределах по r от r0 до R0 и по z от z1 = z0-a до z2, получаем


Q2 = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей . (2.18)


Суммарный критический дебит Q=Q1+Q2 определится формулой


Q = Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых
    <div class=

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: