Xreferat.com » Рефераты по геологии » Инженерная геология

Инженерная геология

Размещено на /


Контрольная работа


по Инженерной геологии


Введение


Геология – комплекс наук о составе, строении, истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.

Особое развитие получила такая составная часть геологии, как инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно - геологические (инженерно-геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.

В современных условиях инженерная геология изучает геологическую среду для целей строительства и для обеспечения её рационального использования и охраны от неблагоприятных для человека процессов и явлений. Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и эксплуатации сооружений.

На первый план выступают задачи по оценки горных пород и их массивов как среды производства инженерных работ и размещения сооружений.

В данной работе освещены геологические процессы и явления естественного (природного) происхождения. А также рассмотрены вопросы, связанные с деятельностью человека при осуществлении строительных работ.


Химический состав земной коры. Понятие о кларках и их величины для основных химических элементов. Причины изменения химического состава земной коры

Земная кора является наиболее хорошо изученной твердой оболочкой Земли. Название «кора» исторически связано с представлением о твердой оболочке, образовавшейся в результате остывания поверхностных слоев расплавленного огненно-жидкого вещества Земли, из которого она состояла первоначально, как это представлялось по ранее господствовавшим космогоническим гипотезам.

Земля уникальна тем, что обладает корой двух типов: континентальной и океанической. Масса земной коры равна 2,8 х 1019 тонн (из них 21% -океаническая кора и 79% - континентальная). Кора составляет 0,473% общей массы Земли.

Земная кора образована различными по составу и происхождению горными породами. Проблемами химического состава земной коры, закономерностями его изменения в пространстве и во времени занимается наука – геохимия. По данным геохимии в земной коре установлено 93 химических элементов. Большинство из них являются сложными т.е. представлены смесью различных изотопов. В земной коре известно более 360 изотопов.

Впервые попытался оценить средний химический состав земной коры в 1815 г. английский минералог В. Филлипс на примере, правда, всего лишь 10 элементов. В общем, он правильно определил количественную последовательность распространенности их и показал, что в неорганической природе резко преобладают кислород и оксиды кремния, алюминия и железа, подобно тому как в живой природе «царствует» четверка элементов-органогенов: кислород, водород, углерод и азот. То была эпоха накопления сведений. Затем наступило время обобщений. Наиболее значимыми исследованиями были труды американского геохимика Ф. Кларка. Он проанализировал данные по химическому составу большого количества минералов и горных пород: этих данных было более 5000. В 1889 г. Ф. Кларк опубликовал первую сводную таблицу среднего химического состава земной коры. Это было лишь начало. Спустя 20 лет появился гораздо более капитальный труд, в котором Ф. Кларк обобщил работы почти 1000 исследователей. В этом справочнике можно было найти данные о составе горных пород, почв и вод. Вскоре Ф Кларк с помощью геолога Г. Вашингтона произвел классический расчет среднего содержания химических элементов в условном слое земной коры толщиной 16 км. Полученные данные для наиболее распространенных элементов q тех пор изменялись в незначительной степени.

Среднее содержание отдельных элементов в земной коре называют кларками. Различают кларки весовые (массовые), атомные и объемные. Весовые кларки – это средние массовые содержания элементов, выраженные в процентах или в граммах на грамм породы. Атомные кларки выражают процентные количества числа атомов элементов. Объемные кларки показывают, какой объем в процентах занимает данный элемент.

В сумме эти числа дают около 98%. Следовательно, на долю всех остальных элементов, существующих на Земле, приходится немногим более 2%. Словом, геохимия констатирует крайне неравномерное распределение химических элементов в земной коре.

Анализ кларковых содержаний различных химических элементов позволил установить некоторые закономерности их распространённости в земной коре:

Кларки отдельных элементов изменяются от десятков процентов до 10-8 и ниже т. к. распространенность хим. элементов в земной коре крайне неравномерна и характеризуется большими контрастами.

Распространенность хим. элементов связана с их положением в периодической системе. Как отмечал еще Д.И. Менделеев, наиболее распространенные элементы земной коры располагаются в начале периодической системы. С увеличением порядкового номера распространённость элементов неравномерно убывает. Таким образом, в земной коре явно преобладают легкие элементы. А.Е. Фермсан для более наглядного изображения особенностей распространения хим. элементов построил полулогарифмический график (рис. 1)


Инженерная геология

Рис. 1. Логарифмы кларков химических элементов: 1-четных; 2-нечетных.


На графике хорошо видны избыточные и недостаточные, или дефицитные, хим. элементы, дающие соответственно пики вверх и вниз.

Из двух соседних элементов периодической системы кларк четного элемента. как правило, выше кларка нечетного. При этом наиболее высокими кларками обладают элементы, раз), разности порядковых номеров которых равны или кратны 6, например О (8), Si (14).

Главными элементами – строителями литосферы являются всего восемь химических элементов – О, Si,Al,Fe,Ca,Na,K,Mg. (см. таблицу 2). При этом ведущее место среди них принадлежит кислороду, составляющему почти половину массы литосферы и около 92% ее объема. Наиболее распространенными являются элементы с наиболее устойчивыми ядрами атомов. Дефицитность же ряды элементов, наоборот, обусловлена малой устойчивостью ядер их атомов.

Также существуют гипотезы, которые связывают закономерности распространенности хим. элементов с особенностями образования земной коры как части Земли. Предполагается, что во время возникновения земной коры, существовали такие энергетические условия, которые благоприятствовали образованию хим. элементов с энергией связи в ядре, соответствующей наиболее распространенным хим. элементам. Таким образом, распространенность хим. элементов в земной коре в настоящее время определяется двумя видами закономерностей: обусловленными свойствами ядер хим. элементов и связанными с особенностями образования земной коры как части Земли. Особенности химического состава земной коры достаточно удовлетворительно объясняются механизмом ее образования. Наиболее обоснованной и экспериментально и теоретически является гипотеза о «зонном» выплавлении вещества земной коры из мантии, разработанная А.П. Виноградовым. В основу ее экспериментального обоснования положен технологический процесс зонной плавки. Механизм этого процесса представлен на рис. 2.


Инженерная геология

Рис. 2. Моделирование процесса зонной плавки.

1-исходная смесь; 2-расплав; 3-закристаллизованное вещество; 4-нагреватель


В трубку поместили смесь соединений, обладающих различной температурой плавления. При помощи нагревателя 4 расплавим узкую зону внизу трубки и будем перемещать нагреватель вверх вдоль трубки. По мере движения нагревателя всё вещество трубки пройдет стадии плавления и последующей кристаллизации. Если такую операцию повторить неоднократно, то исходная смесь разделиться: вверху обособятся более легкоплавкие соединения, внизу – более тугоплавкие. Данные механизмы имеют место при образовании земной коры. При достижении массой Земли некоторой критической величины произошло образование ядра. Под влиянием энергии, выделяемой при распаде радиоактивных элементов, а также за счет гравитационного уплотнения, началось разогревание первоначально холодной Земли. Расплавленные массы под влиянием конвекционных токов перемещались в радиальном направлении к поверхности Земли, проплавляя при совем движении вещество мантии. Многократное повторение этого процесса обусловило закономерную дифференциацию вещества, а именно- вынос из мантии относительно легкоплавких соединений (К2О, Na2O, SiO2, Al2O3), накопление их в верхней оболочке Земли, которую мы называем земной корой. Таким образом, по механизму своего образования земная кора есть не что иное, как продукт дифференциации мантии. Одновременно с выплавлением легкоплавких соединений из вещества мантии происходило выделение паров и газов. В результате дегазации мантийного вещества образовалась основная масса газов и воды, имеющихся на Земле. В настоящее время можно считать установленным, что единственным источником паров воды, при конденсации которых могли образоваться огромные массы Мирового океана, было вещество мантии Земли.

Химический состав земной коры изменяется в течение геологического времени, причем эта эволюция продолжается по сей день. Основными причинами изменения химического состава являются:

Процессы радиоактивного распада, приводящие к самопроизвольному превышению одних химически элементов в другие, более устойчивые в условиях земной коры.

Поступление метеорного вещества в виде метеоритов и космической пыли.

Продолжающиеся процессы дифференциации вещества Земли, приводящие к миграции химических элементов из одной геосферы в другую.


2. Дизъюнктивные нарушения залегания горных пород


Дизъюнктивные нарушения - разрывы сплошности геологических тел. Общий термин для трещин, разрывов, разломов. По происхождению дизъюнктивные нарушения делятся на нетектонические, возникающие при сокращении объёма породы, выветривании, оползнях, падении метеоритов; и тектонические, подразделяемые на разрывы без смещения (трещины) и разрывы со смещением (сбросы, взбросы, сдвиги, надвиги, шарьяжи и раздвиги). По отношению к складчатым и другим тектоническим структурам они могут быть краевыми или граничными, внутренними и сквозными; по глубине проявления - приповерхностными или глубинными, рассекающими земную кору и верхнюю мантию.

Разрывы в горных породах делятся на две большие группы. К первой группе относятся трещины, представляющие собой разрывы, перемещения по которым имеют очень незначительную величину.Во вторую группу объединяются разрывы с заметными перемещениями пород, разъединяемых разрывами. Совокупность трещин, разбивающих тот или иной участок земной коры, называется трещиноватостью. По степени проявления трещины можно разделить на три группы: открытые, закрытые и скрытые.

Открытые трещины характеризуются четко видимой полостью. В закрытых трещинах разрыв хорошо заметен невооруженным глазом, но стенки трещин оказываются сближенными до такой степени, что заметить полость по разрыву неудается.

Скрытые трещины очень тонки и при обычных наблюдениях не заметны, но их легко обнаружить при разбивании или окрашивании горных пород.

В геометрической классификации трещин в осадочных и метаморфических породах, обладающих ясно выраженной слоистостью или имеющих неясную слоистость, но четкую сланцеватую текстуру, выделяются (рис.3):

а) поперечные трещины, секущие в плане слоистость или сланцеватость по направлению падения. В разрезах поперечные трещины могут быть либо вертикальными, либо наклонными;

б) продольные трещины, параллельные линии простирания, но секущие слоистость или сланцеватость в вертикальных разрезах;

в) косые трещины, секущие слоистость или сланцеватость под углом относительно простирания и направления падения;

г) согласные трещины, ориентированные параллельно слоистости, или сланцеватости как в плане, так и в разрезах.

В массивных, а также в слоистых и сланцеватых породах нередко трещины удобнее классифицировать по углу наклона.

В таких случаях обычно выделяются следующие виды трещин: вертикальные (с углами падения от 80 до 90°), крутые (с углами падения 45 до 80°), пологие (с углами падения 10 до 45°), слабо наклоненные и горизонтальные (с углами падения от 0 до 10°).


Инженерная геология


В генетической классификации выделяются следующие типы и виды трещин:

Нетектонические трещины:

1. Первичные трещины.

2. Трещины выветривания.

3. Трещины оползней, обвалов и провалов.

4. Трещины расширения пород при разгрузке.

Тектонические трещины:

1. Трещины отрыва;

2. Трещины скола (скалывания);

3. Трещины раздавливания (сплющивания).

Образование нетектонических трещин в горных породах обусловлено изменениями внутренних свойств пород под влиянием сил, проявляющихся при экзогенных процессах на поверхности Земли или вблизи нее.

Первичные трещины развиваются в результате проявления внутренних сил, возникающих в породах при их усыхании, уплотнении, изменении объема и температуры и физико-химических превращениях.

Трещины выветривания. При выветривании порода теряет свою монолитность. Разрушение ее происходит главным образом за счет раскрытия и расширения ранее существовавших в ней трещин и образования новых — трещин выветривания.

Трещины оползней, обвалов и провалов. В описываемую группу объединены трещины, довольно разнообразные по происхождению. Они обычно часты и четко выражены, но имеют местное распространение.

Трещины расширения пород при разгрузке. Горные породы в земной коре находятся в сильно сжатом состоянии. Одна из основных сил, действующая повсеместно, вызывается тяжестью вышележащей толщи. При высвобождении пород от действия сжимающих сил, что происходит у поверхности Земли, в горных выработках, в бортах речных и овражных долин и при других подобных условиях, породы начинают выдавливаться в свободное пространство. В выработках выдавливаются боковые стенки, кровля и почва, стремящиеся заполнить все ее сечение; у поверхности Земли развиваются трещины отслаивания; в бортах речных долин и оврагов появляются характерные трещины бокового отпора.

Тектонические трещины появляются в горных породах под влиянием тектонических сил, вызываемых в земной коре эндогенными процессами.

Тектонические трещины во многом, отличаются от трещин нетектонических. Различия выражаются прежде всего в том, что эти трещины более выдержаны как по простиранию, так и по падению и ориентированы по единому плану в различных по составу породах.

Трещины отрыва имеют обычно линзовидную (иногда S – образную) форму. Трещины отрыва нередко образуют кулисообразные ряды.(рис.4).

Они образуются в результате раздвигания (приоткрывания) стенок трещин: прямого (трещины отрыва) или косого (трещины разрыва). Обычно трещины выполнены различными жильными минералами (кварц, карбонаты, рудные и др.) и / или дайками магматических пород.

Ось алгебраически максимальных главных нормальных напряжений (σ1) в период формирования трещин отрыва ориентирована в направлении, нормальном (перпендикулярном) их плоскостям.

Оси σ2 иσ3 залегают в плоскости трещины отрыва: в общем (простейшем) случае ось σ3 залегает в направлении простирания формирующейся трещины отрыва, а ось σ2 – совпадает с линией её падения (рис. 4). Трещины скола – по морфологии прямолинейны или слабоизвилисты и характеризуются притертыми (тесно сжатыми) краями и наличием на плоскостях трещин штрихов (борозд) скольжения. Последние свидетельствуют о перемещении стенок трещин относительно друг друга. Трещины обычно «пустые» (без выполнения) и лишь в местах изгибов при перемещении стенок трещин могут возникнуть пустые (позднее выполненные жильными минералами) небольшие по мощности полости.

Обычно одновременно формируются не менее 2 систем так называемых сопряженных во времени и пространстве (синхронных) трещин скола. В кинематическом отношении эти трещины относятся к категории взбросов (взбросо-сдвигов, сдвигов и др.).(рис.4.).

Трещины сплющивания – прямолинейные, тесно сжатые, короткие, без выполнения, на их стенках отсутствуют штрихи скольжения, что свидетельствует о том, что перемещения по плоскостям трещин сплющивания не происходили.

Ось σ3 всегда ориентирована строго перпендикулярно плоскостям трещин сплющивания, ось σ2– по их простиранию, ось σ1 – по направлению их падения (рис. 4). Классификация разрывов со смещениями разработана на основании многолетней практики геологов. Эти разрывы делятся на шесть основных групп: сбросы, взбросы, сдвиги, раздвиги, надвиги и покровы.


Инженерная геология


Разрывы каждой из групп обладают отличительными морфологическими признаками и образуются при различных динамических и кинематических условиях. Поэтому данная классификация является как морфологической, так и генетической. Сбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения опущенных пород.

залегание геологический дрен котлован

Классификация сбросов

По углу наклона смесителя По отношению к простиранию нарушенных горных пород По отношению наклонов смесителя и нарушенных пород По направлению движения крыльев (рис.5) По взаимному расположению По отношению к времени образования нарушенных разрывами отложений
пологие сбросы ( с углом наклона до 300) продольные (общее простирание смесителя совпадает с простиранием нарушенных пород) согласные (наклон пород и смесителя направлен в одну и ту же сторону) прямые (висячее крыло перемещается вниз) параллельные (поверхности смесителей в плане и разрезе параллельны) Конседиментационные (возникающие и развивающиеся одновременно с накоплением осадков)
крутые ( от 300 до 800) косые (смеситель ориентирован под углом к простиранию пород) несогласные (породы и смеситель падают в противоположные строны) обратные (лежачее крыло перемещается вверх) радиальные (расходятся от одной точки или от определенного участка по радиусам) постседиментационные
вертикальные (угол наклона смесителя больше 800) поперечные (направленные вкрест простирания пород)
шарнирные (крылья поворачиваются в разные стороны) перистые (образуют ветвящуюся сеть)

Инженерная геология


Взбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения приподнятых пород.


Классификация взбросов

По углу наклона смесителя По отношению к простиранию нарушенных пород По соотношению наклона пород и смесителя (рис. 6) По направлению перемещения крыльев По взаимному расположению в плане По отношению к времени образования
пологие (с углом наклона смесителя до 300) продольные (простирание смесителя совпадает с направлением простирания попод) согланые (наклон пород и смесителя направлен в одну и ту же сторону) прямые (висячее крыло перемещается вверх) ступенчатые Конседиментационные
крутые ( от 300 до 800) косые (ориентированные под углом к простиранию пород) несогласные (порода и смеситель наклонены в противополож. стороны) обратные (лежачее крыло перемещается вниз) радиальные постседиментационные

Групповые сбросы и взбросы. Сбросы и взбросы развиваются группами, охватывающими значительные территории. Широко распространены системы смещенных блоков горных пород, разделенных сбросами или взбросами, называемых грабенами и горстами. Грабенами называются структуры, образованные сбросами или взбросами, центральные части которых опущены и сложены на поверхности породами, болеемолодыми, чем породы, обнажающиеся в приподнятых краевых частях. Таким образом, грабены характеризуются погружением их центральных частей относительно периферических вдоль линий разрывов (рис.7). Различают простые и сложные грабены. Простые грабены образуются двумя сбросами или взбросами; в сложных грабенах принимает участие большое количество разрывов.


Инженерная геология


Грабены планетарного размера, образованные сбросами, получили название рифтов, а грабены, в строении которых участвуют взбросы — рампы.

Горстами называются структуры, образованные сбросами или взбросами, центральные части которых приподняты и на поверхности сложены более древними породами, чем породы, обнаженные в их краевых частях (рис. 8).


Инженерная геология


Сдвигами называются разрывы, смещения по которым происходят в горизонтальном направлении — по простиранию сместителя (рис. 9). В сдвигах различаются крылья, сместитель, угол наклона сместителя и амплитуда смещения.

По углу наклона сместителя сдвиги делятся на горизонтальные (угол наклона от 0 до 10°), пологие (угол наклона от 10 до 45°), крутые (угол наклона от 45 до 80°), вертикальные (угол наклона сместителя от 80 до 90°).

По отношению к простиранию нарушенных пород сдвиги, так же как и сбросы, могут быть продольными, косыми, или диагональными, и поперечными. Различают правые и левые сдвиги.

По предложению В. В. Белоусова, разрывы, в которых перемещение крыльев происходит перпендикулярно к поверхности отрыва, называют раздвигали. При раздвиге увеличивается зияние между крыльями разрыва.

Разрывы взбросового характера, возникающие одновременно со складчатостью, называются надвигами.

Тектоническими покровами, или шарьяжами, называются крупные надвиги, характеризующиеся перемещениями на километры и десятки километров по пологим, горизонтальным и волнистым поверхностям.

В покровах выделяются перемещенные массы висячего крыла, называемые аллохтоном, и оставшееся на месте лежачее крыло — автохтон. Поверхность, по которой перемещается аллохтон, называют поверхностью волочения.

Тектонические покровы относятся к числу наиболее сложных структурных форм земной коры.

Тектонические покровы (шарьяжи) – это крупные структуры перекрытия, когда один геологический комплекс пород лежит (залегает) на другом наподобие более молодой толщи, но отделен от него полого залегающим разрывным нарушением (рис. 10).

Породы, залегающие под покровом, называются автохтонными (автохтоном).

Породы, слагающие покровы (перемещенные, шарьированные), называются аллохтонными (аллохтоном).

Поверхность, разделяющая авто- и аллохтонные пластины, залегает полого, участками – горизонтально и обычно имеет сложную форму.

Останцы разрушенных (подвергшихся денудации) после своего формирования аллохтонных пластин называются клиппами(рис. 10.)

Выходы пород автохтона среди аллохтонных (например, в долине реки, эродирующей тело шарьяжа) называются тектоническими окнами (рис. 10.)

Типы тектонических покровов.

Выделяют два типа покровов: 1) покровы течения и 2) покровы скалывания.

Первый тип покровов–шарьяжи, образованные сложно дислоцированными (смятыми в лежачие, опрокинутые складки и рассеченные разрывами (отложениями. Они сложены мощными толщами пластичных (в период шарьяжеобразования) пород: флишоидами, серпентинитами и др.

Второй тип покровов образован сравнительно слабо деформированными пластинами, сложенными твердыми, непластичными (в период формирования) хрупкими горными породами.

Мощность покровов достигает 3-4 км, пакетов покровов – 7-8 км.


Инженерная геология


3. Геологическая деятельность океанов, морей, озер


Вся совокупность водных пространств океанов и морей, занимающих 361 млн. км, или 70,8% поверхности Земли, называется Мировым океаном или океаносферой. Мировой океан включает четыре океана: Тихий, Индийский, Атлантический, Северный Ледовитый, все окраинные (Берингово, Охотское, Японское и др.) и внутриконтинентальные моря (Средиземное, Черное, Балтийское и др.). Особенностью океаносферы является единство и взаимосвязь между отдельными частями - океанами и морями. Окраинные моря, будучи отделены от океанов только отдельными островами или подводными возвышенностями, характеризуются относительно свободным водообменом с океанами. Внутриконтинентальные моря, окруженные материковой сушей, имеют связь с океанами через относительно узкие проливы, что вызывает изменения в динамике, составе вод и в других показателях. Море – это одна из главных геологических сил, преобразующих облик Земли. В морских бассейнах, как обычно именуют, моря и океаны, протекают сложные процессы энергичного разрушения, перемещения продуктов разрушения, отложения осадков и формирования из них различных осадочных горных пород. Эти процессы наиболее интенсивно проявляются в прибрежной мелководной зоне (0-200м) - зоне шельфа, которая окаймляет сушу полосой различной ширины и представляет собой подводное продолжение континентов (рис. 11). Площадь шельфа составляет 7,6% площади морей и океанов.


Инженерная геология

Рис. 11 Поперечный разрез океана. I – зона шельфа, II – материковый склон, III – ложе океана, IV – глубоководные впадины на дне.


На глубине от 200 до 2000 м располагается материковый склон , от 2000 до 6000 м - океаническое ложе и более 6000 м – глубоководные впадины. На глубине свыше 200 м волнения, происходящие на поверхности воды, не сказываются на донных отложениях. Дневной свет сюда не проникает. Эта глубина является пределом распространения донных растительных организмов.

В прибрежной зоне морские осадки (обломочные горные породы) формируются как за счет продуктов разрушения берегов, так и за счет привноса материала ветром и особенно реками. В морях обитают многочисленные организмы, имеющие твердые скелеты (раковины, панцири), состоящие из СаСО3 иSiO2nИнженерная геологияH2O, что дает органические осадки переходящие в органические горные породы. Морская вода богата солями, поэтому среди морских отложений большое место занимают отложения химического происхождения.

Вследствие вертикальных колебаний земной коры моря перемещаются. В одних местах берег отступает, и населенные пункты заметно удаляются от моря. В другие море наступает. Берег погружается под воду, энергично размывается. В геологии эти явления называются – трансгрессии (наступление) и регрессии (отступление) моря.

Инженерно-геологические исследования на морских берегах выполняют либо в целях освоения морских прибрежных территорий, либо для строительства зданий и сооружений на берегах.

Геологическая деятельность моря в виде разрушения горных пород, берегов и дна называется – абразией. Процессы абразии находятся в прямой зависимости от особенностей движения воды, интенсивности и направления дующих ветров и течений. Основную разрушительную работу совершают: морской прибой и в меньшей мере различные течения.

Волны действуют на берег постоянно. Под силой удара морские берега разрушаются, образуются обломки пород, которые подхватываются волнами и «бомбардируют» берега. Главное значение в этом процессе имеет механическая сила, постоянное ударное действие волн и обломков пород. Морские берега в результате подмыва разрушаются от волн с различной скоростью от сантиметров до нескольких метров в год. На скорость подмыва влияет ряд факторов. Существенное значение имеет характер напластовывания (рис. 12). Так, наиболее быстро разрушаются берега, сложенные породами с пологим углом падения от моря, и менее быстро – с пологим уклоном падения в сторону моря. В этом случае волны скользят по поверхности слоев, причиняя им незначительные разрушения.


Инженерная геология

Рис. 12 Устойчивость берега моря в зависимости от напластования пород: а) – средняя; б) – минимальная; в) – максимальная; 1 – волны; 2 – положение слоев пород.


Разрушительная работа волн особенно значительна у крутых, обрывистых берегов, где глубина моря сравнительно большая. В результате абразии на берегах образуются волноприбойные террасы (рис. 13).


Инженерная геология

Рис. 13 Строение морского берега, террасы: 1 и 2 – надводные; 3 и 4 – подводные; 5 – пляжная.


В силу колебания уровня моря морские террасы могут располагаться выше пляжа или находиться под водой. Террасы выше пляжа показывают поднятие берега и отступление береговой линии в сторону моря (морские террасы). Подводные террасы свидетельствуют о наступлении моря и опускании берега ниже уровня воды.

Кроме механического разрушения морская вода оказывает химическое воздействие. Она растворяет породы и строительные материалы. Значительное разрушительное воздействие оказывают многие морские организмы и растения. Известную разрушительную работу оказывают морские течения – прибрежные и донные, приливы и отливы. Однако, разрушительная работа течений в сравнении с волнами невелика. Наибольшее значение течения имеют в переносе продуктов разрушения. Во взвешенном состоянии ими транспортируются растворенные вещества и песчано-глинистые частицы. Более крупные частицы и обломки пород переносятся в основном волочением по дну.

При проектировании зданий и сооружений на берегах морей необходимо учитывать абразию, обрушение берегов и возможное истощение пляжей. В силу транспортирующего действия воды, в морях и океанах осадки распределяются довольно закономерно. Так, у берегов накапливается грубообломочная масса (галечники, гравий); в зоне шельфа – пески различной крупности; на материковом склоне преобладает глинистый материал. По мере удаления от берега к обломочным накоплениям все более примешивается органический материал (илы) и осадки химического происхождения. Главная масса осадков откладывается в прибрежной и мелководной части моря. На материковом склоне и океанском ложе более всего развиты органогенные осадки. Обломочные и химические осадки имеют подчиненное значение. Отложения, образовавшиеся в морской среде, широко распространены на суше, где они занимают огромные пространства на континентах в виде отложений большой мощности и различного литологического состава (рис. 14).


Инженерная геология

Рис. 14 Осадочная толщина морского происхождения, перекрытые современными наносами; 1 – песок; 2 – известняк; 3 – песчаник; 4 – глины; 5 – современные наносы в виде суглинка.


Озера – замкнутые углубления, на поверхности Земли, заполненные водой и не имеющие непосредственной связи с морем. Озера занимают 2 % поверхности суши. Берега многих озер, особенно крупных, довольно плотно населены и широко используются для промышленного и гражданского строительства. Отсюда ясна вся важность изучения инженерно-геологических условий районов озер. Озера имеют различные происхождения. Среди них различают:

- тектонические – во впадинах тектонического происхождения (Байкал, Ладожское);

- эрозионные – в котлованах размыва;

- карстовые – в заполненных водой карстовых воронках;

- запрудные – образовавшиеся запруживанием рек в результате обвалов.

Озера подобно морям совершают геологическую работу разрушительного и созидательного характеров, только в меньших масштабах.

Разрушительная работа озер проявляется в абразивной деятельности волн, нагоняемых ветром. Постоянно дующие в определенных направлениях ветры вызывают волны, которые прибоем подмывают берега. Так создаются озерные абразионные террасы, выработанные в коренных берегах, и аккумулятивные, сложенные озерными осадками. Озерные террасы формируются в тесной зависимости от изменения положения уровня озер. Большое влияние на положение уровня воды в озерах оказывают тектонические движения земной коры, а в последнее время и производственная деятельность человека. Созидательная работа озер заключается в образовании отложений. Озерные осадки представлены большим комплексом различных накоплений обломочного, химического и органического происхождения. Вдоль побережий, где формируются пляжи, навеваются дюны. Озера откладывают в основном грубые обломки и различной крупности пески. Донная часть озер заполняется глинистыми осадками, песками, илами. На дне соленых озер самостоятельно или вместе с механическими осадками отлагаются соли (хлориды, сульфаты). В озерах формируются специфические образования, свойственные только озерам, такие как сапропель, торф, особые озерные мергели. Важнейшей особенностью некоторых мелководных озер является способность в определенных геологических и физико-географических условиях переходить в стадию болот.


4. Приток воды в безнапорные совершенные дрены


Дрены - устройства, отбирающие из пределов водоносного горизонта воду. Могут быть горизонтальными и вертикальными. Дрены совершенного типа пересекают водоносный горизонт полностью, достигая водоупора. Дрены несовершенного типа прорезают лишь часть водоносного горизонта.

Приток воды кней происходит по всей поверхности соприкосновения стенок выработки с водоносным горизонтом. Если же выработка не доходит до водоупора, она называется несовершенной по степени вскрытияводоносного горизонта. Зачастую выработки закрепляются от обрушения, цементируются скважины оборудуются обсадными трубами, фильтрами и т. п. Естественно, что приток воды в такие выработки затруднен и их называют несовершенными по характеру вскрытия водоносного горизонта.Основные уравнения притока воды к водозаборам (скважинам и дренам) будем выводить при условии совершенства выработок.

Представим себе плоский поток грунтовых вод. Гидравлический градиент I в данном случае равен


Инженерная геология (1)


где х — расстояние между сечениями h1 и h2

Если мы будем сближать сечения h1 и h2 так, чтобы расстояние между ними стало равно нулю, то получим уклон (гидравлический градиент) в точке а, который равен тангенсу угла наклона зеркала грунтовых вод или первой производной


Инженерная геология (2)


Подставив полученное выражение гидравлического уклона в выражение закона Дарси, получим для безнапорных вод


Инженерная геология (3)


После устройства дрены скорость движения воды в ней увеличивается и уровень

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: