Xreferat.com » Топики по английскому языку » Интегралы, дифуры, матрицы

Интегралы, дифуры, матрицы

Інтегральне числення

Невизначений інтеграл

1. Поняття первісної

Означення: Функція F(x) називається первісною для ф-ії f(x) на проміжку І, якщо на цьому проміжку F`(x)=f(x) або dF(x)=f(x)dx.

Із означення виходить, що первісна F(x) – диференційована, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжку, на якому вона розглядається.

Теорема про множину первісних

Якщо  F(x) – первісна для функції f(х) на проміжку І, то:

F(x)+С – також первісна для f(x) на проміжку І;

будь-яка первісна Ф(х) для f(x) може біти представлена у вигляді Ф(х)= F(x)+С на проміжку І. (Тут С=const називається довільною сталою).

2. Невизначений інтеграл. Задача інтегрування

Означення: Операція знаходження первісних для ф-ії f(x) називається інтегруванням.

Задача інтегрування функції на проміжку полягає в тому, щоб знайти всі  первісні функції на цьому проміжку. Для розв’язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x)+С – загальний вигляд всієї множини первісних на цьому проміжку.

Означення: Ф-ія F(x)+С, зо являє собою загальний вигляд всієї множини первісних для  ф-ії f(x) на проміжку І і позначається

Интегралы, дифуры, матрицы

де f(x) – підінтегральна ф-ія; f(x)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.

Теорема Коші. Для існування невизначеного інтеграла для ф-ії f(x) на певному проміжку достатньо, щоб f(x) була неперервною на цьому проміжку.

Неінтегровні інтеграли – які неможливо записати через основні елементарні ф-ії.

3. Властивості невизначеного інтеграла

Властивості, що випливають із означення невизн. інт:

І. похідна від невизначеного інтеграла дорівнює підінтегральній ф-ії:

Интегралы, дифуры, матрицы

ІІ. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу.

ІІІ. Интегралы, дифуры, матрицы

Властивості, що відображають основні правила інтегрування:

IV. Сталий множник, що не дорівнює нулю, можна виносити з-під знака інтеграла.

V. Невизн. інтеграл від суми функцій дорівнює сумі невизначених інтегралів від цих функцій, якщо вони існують.

4. Інтегрування розкладом

Базується на 5-й властивості невизначеного інтеграла. Мета – розкласти підінтегральну ф-ію на такі доданки, які простіше інтегрувати.

5. Інтегрування частинами

Теорема: Якщо функції u(x) та v(x) мають неперервні похідні, то:  Интегралы, дифуры, матрицы

На практиці ф-ії u(x) та v(x) рекомендується вибирати за таким правилом: при інтегруванні частинами підінтегральний вираз f(x)dx розбивають на два множники типу udv, тобто f(x)dx=udv; при цьому ф-ія u(x) вибирається такою, щоб при диференціюванні вона спрощувалася, а за dv приймають залишок підінтегрального виразу, який мітить dx, інтеграл від якого відомий, або може бути просто знайдений.

Деякі типи інтегралів і їх заміни:

v(x): Интегралы, дифуры, матрицы

Интегралы, дифуры, матрицыИнтегралы, дифуры, матрицы

де Р(х) – многочлен, Q(x) – алгебраїчна ф-ія.

6. Метод підстановки

Мета – перетворити інтеграл до такого вигляду, який простіше інтегрувати.

Теорема. Якщо f(x) – неперервна, а x=j(t) має неперервну похідну, то:

Интегралы, дифуры, матрицы

Наслідок.

Интегралы, дифуры, матрицы

7. Метод безпосереднього інтегрування

В цьому методі використ. формула

Интегралы, дифуры, матрицы

варіанту заміни змінної, але саму змінну не записують (роблять усно) При цьому використовують операцію внесення ф-ії під знак диференціала.

Через це, якщо: Интегралы, дифуры, матрицы, то:

Интегралы, дифуры, матрицы

Під знак диференціала можна вносити будь-який сталий доданок – значення диференціалу від цього не зміниться.

8. Інтегрування раціональних ф-ій

Означення: Відношення двох многочленівИнтегралы, дифуры, матрицыназивається раціональним дробом.

Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n<m. Якщо ж n³m, то дріб неправильний.

Найпростіші раціональні дроби (4 типи):

1.Интегралы, дифуры, матрицы 2.Интегралы, дифуры, матрицы 3.Интегралы, дифуры, матрицы 4.Интегралы, дифуры, матрицы

де k³2, kÎN, D=p2-4q<0

Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила:

1) Якщо Qm(x)=(x-a)k×gm-k(x), то:

Интегралы, дифуры, матрицы

2) Якщо Qm(x)=(x2+px+q)k×gm-2k(x), то:

Интегралы, дифуры, матрицы

де Аі, Ві, Интегралы, дифуры, матрицы– деякі коефіцієнти, Интегралы, дифуры, матрицы та Интегралы, дифуры, матрицыправильні раціональні дроби.

Методика інтегрування раціональних ф-ій:

1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена і правильного раціонального дробу.

2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів.

3. Інтегрують цілу частину і найпростіші дроби.

9. Інтегрування тригонометричних функцій

Розглянемо òR(sin x,cos x)dx, де R – раціональна ф-ія відносно sin, cos, тобто над sin, cos викон. лише арифметичні дії та піднесення до цілого степеня. Існують такі підстановки, що за їх допомогою інтеграл òR(sinx,cosx)dx завжди може бути зведений до інтеграла від раціональної ф-ії òR*(t)dt, загальна схема інтегрування якої розроблена.

1) Універсальна тригонометрична підстановка Интегралы, дифуры, матрицы. На практиці універсальну тригонометричну підстановку використовують, якщо sin x, cos x входять в невисокому степені, інакше підрахунки будуть складні.

2) Підінтегральна ф-ія – непарна відносно sin x, тоді роблять підстановку cos x = t.

3) Підінтегральна ф-ія – непарна відносно cos x раціоналізується за допомогою підстановки sin x = t.

4) Підінтегральна ф-ія R(sin x, cos x) – парна по sinx, cosx сукупно, тобто R(-sinx,-cosx)=R(sinx,cosx). В цьому випадку використовують підстановку tgx=t  або ctgx=t.

5) Підінтегральна ф-ія R(tgx) раціоналізується підстановкою tgx=t.

В інтегралах òsin2nx×cos2mxdx рекомендується скористатися формулами зниження степеня.

10. Інтегрування ірраціональних функцій.

1) Интегралы, дифуры, матрицы

2)Интегралы, дифуры, матрицы

3) Интегралы, дифуры, матрицы

Підінтегральна ф-ія Интегралы, дифуры, матрицыпісля виділення повного квадрата і заміни Интегралы, дифуры, матрицыраціоналізується тригонометричними підстановками.

Визначений інтеграл

1. Поняття визначеного інтеграла

Означення: Якщо існує скінченна границя інтегральних сум Sn при lіà0 і не залежить ні від способу розбиття [a;b] на частини Dхі, ні від вибору точок xі, то ця границя називається визначеним інтегралом від ф-ії f(x) на проміжку [a;b] і позначається:

Интегралы, дифуры, матрицы

За означенням, визначений інтеграл Интегралы, дифуры, матрицы– число, яке залежить від типу ф-ії f(x) та проміжку [a;b]; він не залежить від того, якою буквою позначена змінна інтегрування.

Ф-ія, для якої на інтервалі існує визначений інтеграл називається інтегровною.

2. Властивості визначеного інтеграла

1) Якщо f(x)=c=const, то Интегралы, дифуры, матрицы

2) Сталий множник можна виносити з-під знака визначеного інтеграла.

3) Якщо f1(x) та f2(x) інтегровні на [a;b], то: Интегралы, дифуры, матрицы

4) Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл лише змінить свій знак на протилежний.

5) Визначений інтеграл з однаковими межами інтегрування дорівнює нулю.

6) Якщо f(x) – інтегровна в будь-якому із проміжків [a;b], [a;c], [c;b], то:    Интегралы, дифуры, матрицы

7) Якщо f(x)³0 і інтегровна для xÎ[a,b], b>a, то Интегралы, дифуры, матрицы

8) Якщо f(x), g(x) – інтегровні та f(x)³g(x) для  xÎ[a;b], b>a, то: Интегралы, дифуры, матрицы

9) Якщо f(x) – інтегровна та m£f(x)£M, для xÎ[a;b], b>a, то Интегралы, дифуры, матрицы

10) (Теорема про середнє): Якщо ф-ія f(x) – неперервна для xÎ[a;b], b>a, то знайдеться така точка x= cÎ [a;b], що:   Интегралы, дифуры, матрицы

3. Поняття визначеного інтеграла із змінною верхньою межею інтегрування, формула Ньютона-Лейбніца.

Теорема: Якщо ф-ія f(x) неперервна для будь-якого xÎ[a;b],  то похідна від інтеграла із змінною верхньою межею інтегрування по цій межі дорівнює підінтегральній ф-ії від верхньої межі інтегрування, тобто:

Интегралы, дифуры, матрицы

Наслідки: 1) Визначений інтеграл із змінною верхньою межею від ф-ії f(x) є одна із первісних для f(x).  2) Будь-яка неперервна ф-ія на проміжку [a;b] має на цьому проміжку первісну, яку, наприклад, завжди можна побудувати у вигляді визначеного інтеграла із змінною верхньою межею.

Теорема (Ньютона-Лейбніца): Якщо ф-ія f(x) – неперервна для xÎ [a;b], то визначений інтеграл від ф-ії f(x) на проміжку [a;b] дорівнює приросту первісної ф-ії f(x) на цьому проміжку, тобто:

Интегралы, дифуры, матрицы  де F’(x)=f(x)

Зв’язок між визначеним та невизначеним інтегралами можна представити такою рівністю:

Интегралы, дифуры, матрицыНаслідок: Для обчислення визначеного інтеграла достатньо знайти одну із первісних підінтегральної ф-ії і виконати над нею подвійну підстановку.

4. Метод підстановки у визначеному інтегралі

Теорема: Якщо: 1) f(x) – неперервна для xÎ[a;b]; 2) j(a)=а, j(b)=b;  3) x=j(t) та j‘(t) – неперервні для tÎ [a;b];  4) при tÎ [a;b]èxÎ [a;b], то

Интегралы, дифуры, матрицы

Зауваження: При заміні змінної інтегрування у визначеному інтегралі змінюються межі інтегрування і тому нема потреби повертатись до початкової змінної.

5. Інтегрування частинам у визначеному інтегралі

Теорема: Якщо ф-ії u(x) та v(x) мають неперервні похідні для xÎ[a;b], то Интегралы, дифуры, матрицы

Узагальнення   поняття   інтеграла

1. Невластиві інтеграли із нескінченним проміжком інтегрування

Нехай f(x) інтегровна для будь-якого скінченного bÎ[a;+¥), так що Интегралы, дифуры, матрицы існує.

Означення: Границя Интегралы, дифуры, матрицы при bà+¥ називається невластивим інтегралом від ф-ії не нескінченному проміжку [a;+¥) і позначається:

 Интегралы, дифуры, матрицы

Якщо ця границя скінченна, то невластивий інтеграл називається збіжним, а якщо не існує (в тому числі нескінченна), – розбіжним.

Вважаючи, що f(x) – інтегровна для скінченних a та b, формули для обчислення невластивих інтегралів на  нескінченному проміжку мають вигляд:

Интегралы, дифуры, матрицы

де с=const.

Теорема: Якщо при x ³ a має місце нерівність 0£f(x)£g(x) то із збіжності інтеграла Интегралы, дифуры, матрицы виходить збіжність інтеграла Интегралы, дифуры, матрицы, або із розбіжності Интегралы, дифуры, матрицы випливає розбіжність Интегралы, дифуры, матрицы.

2. Обчислення невластивих інтегралів від розривних (необмежених) функцій

Нехай f(x) неперервна на проміжку (a;b] та при x=a має розрив 2-го роду.

Означення: Интегралы, дифуры, матрицы називається невластивим інтегралом від розрізненої (необмеженої) функції f(x).

Якщо ця границя існує – інтеграл збіжний, якщо ні – розбіжний.

Для обчислення таких невластивих інтегралів використовують такі формули:

1) x = a – точка розриву f(x),

Интегралы, дифуры, матрицы

2) x = b – точка розриву f(x),

Интегралы, дифуры, матрицы

3) x=cÎ(a;b) –точка розриву f(x),

Интегралы, дифуры, матрицы

Зауваження: до невластивих інтегралів, які мають точку розриву, що є внутрішньою для [a;b] не можна застосовувати формулу Ньютона-Лейбніца.

3. Поняття подвійного інтеграла

Означення: Якщо Интегралы, дифуры, матрицыіснує та не залежить ні від способу розбиття області D на частини, ні від вибору точок Mi, то ця границя називається подвійним інтегралом від функції трьох змінних u=f(x,y,z) в тривимірній області D, який позначається так:

Интегралы, дифуры, матрицыЗа такою схемою можна побудувати n-кратний інтеграл від функції n змінних u=f(M), M(x1, x2,…, xn,) у відповідній області D.

Властивості подвійного інтеграла:

1. Интегралы, дифуры, матрицы

2. Интегралы, дифуры, матрицы

3. Интегралы, дифуры, матрицы якщо D=D1ÈD2 D1ÇD2= Æ.

4. Интегралы, дифуры, матрицыS – площа області D.

4. Обчислення подвійного інтеграла зведенням до повторного інтеграла

Означення: Область D називається правильною по відношенню до деякої осі, якщо будь-яка пряма паралельна цій осі перетинає межу області не більше ніж у двох точках.

5. Заміна змінних інтегрування в подвійному інтегралі

Теорема: Якщо ф-ія f(x;y) неперервна в області D, а ф-ії x=j(u;v), y=y(u;v) диференційовні і встановлюють взаємно-однозначну в системі Ouv, і при цьому їхній якобіан зберігає незмінним свій знак в області D, то має місце формула: Интегралы, дифуры, матрицы

6. Поняття криволінійних інтегралів першого та другого роду

Криволінійний інтеграл першого роду

Означення: Интегралы, дифуры, матрицы

називається криволінійним інтегралом першого роду, якщо ця границя існує і не залежить ні від способу розбиття дуги L на елементарні дуги, ні від вибору на них точок Mi.

Враховуючи формулу обчислення дуги кривої, цей інтеграл можна обчислити за такою формулою:

Интегралы, дифуры, матрицы

В тривимірному випадку для ф-ії u=f(x;y;z), коли дуга кривої L задана параметричними рівняннями x=x(t), y=y(t), z=z(t), a £ t £ b. Формула має вигляд:

Интегралы, дифуры, матрицыЗауваження: Криволінійний інтеграл першого роду не залежить від напряму шляху інтегрування.

Криволінійний інтеграл першого роду

Якщо P(x;y) та Q(x;y) – неперервні ф-ії, а y=j(x) – рівняння дуги гладкої кривої L, яка пробігається при зміні х від а до b, то криволінійний інтеграл другого роду має такий вигляд:

Интегралы, дифуры, матрицыКриволінійний інтеграл другого роду змінює свій знак на протилежний при зміні напряму шляху інтегрування (тобто обходу дуги кривої L).

Криволінійний інтеграл другого роду можна розглядати як інтеграл від вектор-функції Интегралы, дифуры, матрицыпо диференціалу радіус-вектораИнтегралы, дифуры, матрицыдуги кривої лінії L, тобто:

Интегралы, дифуры, матрицы

ФУНКЦІЇ   БАГАТЬОХ   ЗМІННИХ

Основні поняття

1. Множини точок на площині та в n-вимірному просторі.

Множина точок називається зв'язною, якзо будь-які її дві  точки можна з'єднати ламаною лінією так, щоб всі точки цієї лінії належали цій множині.

Множина точок називається обмеженою, якщо її точки належать множині точок круга скінченного радіуса.

Множина точок, координати яких задовольняють нерівність (x1-x10)2+(x2-x20)2+…+(xn-xn0)2<d2 називається d-околом точки P0(x10, x20,…, xn0).

Зауваження: у випадку двовимірного простору цю нерівність можна представити у вигляді: (х-х0)2+(у-у0)2<d2.

Точка внутрішня для множини точок, якщо вона належить цій множині разом з деяким своїм d-околом і зовнішня, якщо існує її окіл з точок, жодна з яких на належить цій множині.

Зв’язна множина, яка складається тільки з внутрішніх точок, називається відкритою областю (або просто областю).

Точка наз. межовою для області якщо

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: