Sir Isaac Newton

Born: 4 Jan 1643 in Woolsthorpe, Lincolnshire, England

Died: 31 March 1727 in London, England

Isaac Newton's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 was the highly productive period in which he was Lucasian professor at Cambridge. The third period (nearly as long as the other two combined) saw Newton as a highly paid government official in London with little further interest in mathematical research.

Isaac Newton was born in the manor house of Woolsthorpe, near Grantham in Lincolnshire. Although by the calendar in use at the time of his birth he was born on Christmas Day 1642, we give the date of 4 January 1643 in this biography which is the "corrected" Gregorian calendar date bringing it into line with our present calendar. (The Gregorian calendar was not adopted in England until 1752.) Isaac Newton came from a family of farmers but never knew his father, also named Isaac Newton, who died in October 1642, three months before his son was born. Although Isaac's father owned property and animals which made him quite a wealthy man, he was completely uneducated and could not sign his own name.

You can see a picture of  Woolsthorpe Manor as it is now.

Isaac's mother Hannah Ayscough remarried Barnabas Smith the minister of the church at North Witham, a nearby village, when Isaac was two years old. The young child was then left in the care of his grandmother Margery Ayscough at Woolsthorpe. Basically treated as an orphan, Isaac did not have a happy childhood. His grandfather James Ayscough was never mentioned by Isaac in later life and the fact that James left nothing to Isaac in his will, made when the boy was ten years old, suggests that there was no love lost between the two. There is no doubt that Isaac felt very bitter towards his mother and his step-father Barnabas Smith. When examining his sins at age nineteen, Isaac listed:-

Threatening my father and mother Smith to burn them and the house over them.

Upon the death of his stepfather in 1653, Newton lived in an extended family consisting of his mother, his grandmother, one half-brother, and two half-sisters. From shortly after this time Isaac began attending the Free Grammar School in Grantham. Although this was only five miles from his home, Isaac lodged with the Clark family at Grantham. However he seems to have shown little promise in academic work. His school reports described him as 'idle' and 'inattentive'. His mother, by now a lady of reasonable wealth and property, thought that her eldest son was the right person to manage her affairs and her estate. Isaac was taken away from school but soon showed that he had no talent, or interest, in managing an estate.

An uncle, William Ayscough, decided that Isaac should prepare for entering university and, having persuaded his mother that this was the right thing to do, Isaac was allowed to return to the Free Grammar School in Grantham in 1660 to complete his school education. This time he lodged with Stokes, who was the headmaster of the school, and it would appear that, despite suggestions that he had previously shown no academic promise, Isaac must have convinced some of those around him that he had academic promise. Some evidence points to Stokes also persuading Isaac's mother to let him enter university, so it is likely that Isaac had shown more promise in his first spell at the school than the school reports suggest. Another piece of evidence comes from Isaac's list of sins referred to above. He lists one of his sins as:-

... setting my heart on money, learning, and pleasure more than Thee ...

which tells us that Isaac must have had a passion for learning.

We know nothing about what Isaac learnt in preparation for university, but Stokes was an able man and almost certainly gave Isaac private coaching and a good grounding. There is no evidence that he learnt any mathematics, but we cannot rule out Stokes introducing him to  Euclid's Elements which he was well capable of teaching (although there is evidence mentioned below that Newton did not read  Euclid before 1663). Anecdotes abound about a mechanical ability which Isaac displayed at the school and stories are told of his skill in making models of machines, in particular of clocks and windmills. However, when biographers seek information about famous people there is always a tendency for people to report what they think is expected of them, and these anecdotes may simply be made up later by those who felt that the most famous scientist in the world ought to have had these skills at school.

Newton entered his uncle's old College, Trinity College Cambridge, on 5 June 1661. He was older than most of his fellow students but, despite the fact that his mother was financially well off, he entered as a sizar. A sizar at Cambridge was a student who received an allowance toward college expenses in exchange for acting as a servant to other students. There is certainly some ambiguity in his position as a sizar, for he seems to have associated with "better class" students rather than other sizars. Westfall has suggested that Newton may have had Humphrey Babington, a distant relative who was a Fellow of Trinity, as his patron. This reasonable explanation would fit well with what is known and mean that his mother did not subject him unnecessarily to hardship as some of his biographers claim.

Newton's aim at Cambridge was a law degree. Instruction at Cambridge was dominated by the philosophy of  Aristotle but some freedom of study was allowed in the third year of the course. Newton studied the philosophy of  Descartes,  Gassendi,  Hobbes, and in particular  Boyle. The mechanics of the Copernican astronomy of  Galileo attracted him and he also studied  Kepler's Optics. He recorded his thoughts in a book which he entitled Quaestiones Quaedam Philosophicae (Certain Philosophical Questions). It is a fascinating account of how Newton's ideas were already forming around 1664. He headed the text with a Latin statement meaning " Plato is my friend, Aristotle is my friend, but my best friend is truth" showing himself a free thinker from an early stage.

How Newton was introduced to the most advanced mathematical texts of his day is slightly less clear. According to  de Moivre, Newton's interest in mathematics began in the autumn of 1663 when he bought an astrology book at a fair in Cambridge and found that he could not understand the mathematics in it. Attempting to read a trigonometry book, he found that he lacked knowledge of geometry and so decided to read  Barrow's edition of  Euclid's Elements. The first few results were so easy that he almost gave up but he:-

... changed his mind when he read that parallelograms upon the same base and between the same parallels are equal.

Returning to the beginning, Newton read the whole book with a new respect. He then turned to  Oughtred's Clavis Mathematica and  Descartes' La Géométrie. The new algebra and analytical geometry of  Viète was read by Newton from Frans van  Schooten's edition of  Viète's collected works published in 1646. Other major works of mathematics which he studied around this time was the newly published major work by van  Schooten Geometria a Renato Des Cartes which appeared in two volumes in 1659-1661. The book contained important appendices by three of van  Schooten disciples, Jan  de Witt, Johan  Hudde, and Hendrick van  Heuraet. Newton also studied  Wallis's Algebra and it appears that his first original mathematical work came from his study of this text. He read  Wallis's method for finding a square of equal area to a  parabola and a  hyperbola which used indivisibles. Newton made notes on  Wallis's treatment of series but also devised his own proofs of the theorems writing:-

Thus  Wallis doth it, but it may be done thus ...

It would be easy to think that Newton's talent began to emerge on the arrival of  Barrow to the Lucasian chair at Cambridge in 1663 when he became a Fellow at Trinity College. Certainly the date matches the beginnings of Newton's deep mathematical studies. However, it would appear that the 1663 date is merely a coincidence and that it was only some years later that  Barrow recognised the mathematical genius among his students.

Despite some evidence that his progress had not been particularly good, Newton was elected a scholar on 28 April 1664 and received his bachelor's degree in April 1665. It would appear that his scientific genius had still not emerged, but it did so suddenly when the plague closed the University in the summer of 1665 and he had to return to Lincolnshire. There, in a period of less than two years, while Newton was still under 25 years old, he began revolutionary advances in mathematics, optics, physics, and astronomy.

While Newton remained at home he laid the foundations for differential and integral calculus, several years before its independent discovery by  Leibniz. The 'method of fluxions', as he termed it, was based on his crucial insight that the integration of a function is merely the inverse procedure to differentiating it. Taking differentiation as the basic operation, Newton produced simple analytical methods that unified many separate techniques previously developed to solve apparently unrelated problems such as finding areas,  tangents, the lengths of curves and the maxima and minima of functions. Newton's De Methodis Serierum et Fluxionum was written in 1671 but Newton failed to get it published and it did not appear in print until John Colson produced an English translation in 1736.

When the University of Cambridge reopened after the plague in 1667, Newton put himself forward as a candidate for a fellowship. In October he was elected to a minor fellowship at Trinity College but, after being awarded his Master's Degree, he was elected to a major fellowship in July 1668 which allowed him to dine at the Fellows' Table. In July 1669  Barrow tried to ensure that Newton's mathematical achievements became known to the world. He sent Newton's text De Analysi to  Collins in London writing:-

[Newton] brought me the other day some papers, wherein he set down methods of calculating the dimensions of magnitudes like that of Mr  Mercator concerning the hyperbola, but very general; as also of resolving equations; which I suppose will please you; and I shall send you them by the next.

 Collins corresponded with all the leading mathematicians of the day so  Barrow's action should have led to quick recognition.  Collins showed  Brouncker, the President of the Royal Society, Newton's results (with the author's permission) but after this Newton requested that his manuscript be returned.  Collins could not give a detailed account but de  Sluze and  Gregory learnt something of Newton's work through  Collins.  Barrow resigned the Lucasian chair in 1669 to devote himself to divinity, recommending that Newton (still only 27 years old) be appointed in his place. Shortly after this Newton visited London and twice met with  Collins but, as he wrote to  Gregory:-

... having no more acquaintance with him I did not think it becoming to urge him to communicate anything.

Newton's first work as Lucasian Professor was on optics and this was the topic of his first lecture course begun in January 1670. He had reached the conclusion during the two plague years that white light is not a simple entity. Every scientist since  Aristotle had believed that white light was a basic single entity, but the chromatic aberration in a telescope lens convinced Newton otherwise. When he passed a thin beam of sunlight through a glass prism Newton noted the spectrum of colours that was formed.

He argued that white light is really a mixture of many different types of rays which are refracted at slightly different angles, and that each different type of ray produces a different spectral colour. Newton was led by this reasoning to the erroneous conclusion that telescopes using refracting lenses would always suffer chromatic aberration. He therefore proposed and constructed a reflecting telescope.

In 1672 Newton was elected a fellow of the Royal Society after donating a reflecting telescope. Also in 1672 Newton published his first scientific paper on light and colour in the Philosophical Transactions of the Royal Society. The paper was generally well received but  Hooke and  Huygens objected to Newton's attempt to prove, by experiment alone, that light consists of the motion of small particles rather than waves. The reception that his publication received did nothing to improve Newton's attitude to making his results known to the world. He was always pulled in two directions, there was something in his nature which wanted fame and recognition yet another side of him feared criticism and the easiest way to avoid being criticised was to publish nothing. Certainly one could say that his reaction to criticism was

Похожие рефераты: