Xreferat.com » Рефераты по информатике и программированию » Аппаратура для построения сетей Frame Relay. Сети X.25

Аппаратура для построения сетей Frame Relay. Сети X.25

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Петрозаводский государственный университет

Кольский филиал

Кафедра информационных технологий


Доклад на тему:

«Аппаратура для построения сетей Frame Relay. Сети X.25»


студента 5 курса (гр. 2)

очного отделения

факультета ИПМ

специальности 230102 - Автоматизированные системы обработки информации и управления

Самсонова Антона Владимировича


Апатиты

2010

Сети Х.25


Классической технологией коммутации пакетов является протокол X.25.

В середине-конце 1970 гг. потребовался определенный набор протоколов, чтобы обеспечить пользователям связность глобальной сети с общедоступными сетями передачи данных (PDN). Сети PDN, такие как TELENET и TYMNET, добились замечательного успеха, однако было ясно, что стандартизация протоколов еще больше увеличит число абонентов PDN за счет возросшей совместимости оборудования и более низких цен. Результатом последующих усилий по разработке в этом направлении была группа протоколов, самым популярным из которых является Х.25.

Протокол Х.25 (официально называемый CCITT Recommendation X.25 - "Рекомендация "Х.25 CCITT) был разработан компаниями общественных линий связи (в основном телефонными компаниями), а не каким-то отдельным коммерческим предприятием. Поэтому спецификация разработана так, чтобы обеспечить хорошую работоспособность независимо от типа системы пользователя или изготовителя. Предлагаемые услуги (и взимаемая плата) регулируются Федеральной Комиссией по Связи (FCC).

Одним из уникальных свойств Х.25 является его международный характер. Х.25 и связанными с ним протоколами управляет одно из агентств ООН, называемое "Международный Союз по Телекоммуникациям (ITU). Комитет ITU, ответственный за передачу голоса и данных, называется Международным консультативным комитетом по телеграфии и телефонии (CCITT). Членами CCITT являются FCC, Европейские PTT, общедоступные сети передачи данных и множество компаний, занимающихся компьютерами и передачей данных. То, что Х.25 стал стандартом подлинно глобального значения, является прямым следствием присущих ему свойств.

Основы технологии


Х.25 определяет характеристики телефонной сети для передачи данных. Чтобы начать связь, один компьютер обращается к другому с запросом о сеансе связи. Вызванный компьютер может принять или отклонить связь. Если вызов принят, то обе системы могут начать передачу информации с полным дублированием. Любая сторона может в любой момент прекратить связь.

Спецификация Х.25 определяет двухточечное взаимодействие между терминальным оборудованием (DTE) и оборудованием завершения действия информационной цепи (DCE). Устройства DTE (терминалы и главные вычислительные машины в аппаратуре пользователя) подключаются к устройствам DCE (модемы, коммутаторы пакетов и другие порты в сеть PDN, обычно расположенные в аппаратуре этой сети), которые соединяются с "коммутаторами переключения пакетов" (packet switching exchange) (PSE или просто switches) и другими DCE внутри PSN и, наконец, к другому устройству DTE (Рис.1).


Аппаратура для построения сетей Frame Relay. Сети X.25

Рис. 1. Взаимоотношения между объектами сети Х.25.


DTE может быть терминалом, который не полностью реализует все функциональные возможности Х.25. Такие DTE подключаются к DCE через трансляционное устройство, называемое пакетный ассемблер/дизассемблер - packet assembler/disassembler - (РAD).

Спецификация Х.25 составляет схемы Уровней 1-3 эталонной модели OSI.

Уровень 3 Х.25 описывает форматы пакетов и процедуры обмена пакетами между равноправными объектами Уровня 3.

Уровень 2 Х.25 реализован Протоколом Link Access Procedure, Balanced (LAPB). LAPB определяет кадрирование пакетов для звена DTE/DCE.

Уровень 1 Х.25 определяет электрические и механические процедуры активации и дезактивации физической среды, соединяющей данные DTE и DCE (Рис. 2). Необходимо отметить, что на Уровни 2 и 3 также ссылаются как на стандарты ISO - ISO 7776 (LAPB) и ISO 8208.


Аппаратура для построения сетей Frame Relay. Сети X.25

Рис. 2. Х.25 и модельOSI.


Сквозная передача между устройствами DTE выполняется через двунаправленную связь, называемую виртуальной цепью. Виртуальные цепи позволяют осуществлять связь между различными элементами сети через любое число промежуточных узлов без назначения частей физической среды, что является характерным для физических цепей. Уровень 3 Х.25 отвечает за сквозную передачу, включающую как PVC, так и SVC.

После того, как виртуальная цепь организована, DTE отсылает пакет на другой конец связи путем отправки его в DCE, используя соответствующую виртуальную цепь. DCE просматривает номер виртуальной цепи для определения маршрута этого пакета через сеть Х.25. Протокол Уровня 3 Х.25 осуществляет мультиплексную передачу между всеми DTE, которые обслуживает устройство DCE, расположенное в сети со стороны пункта назначения, в результате чего пакет доставлен к DTE пункта назначения.

Сейчас принято морщить при этих словах нос и говорить: "это дорого, медленно, устарело и не модно". Действительно, на сегодня практически не существует сетей X.25, использующих скорости выше 128 кбит/сек. Протокол X.25 включает мощные средства коррекции ошибок, обеспечивая надежную доставку информации даже на плохих линиях, и широко используется там, где нет качественных каналов связи. Естественно, за надежность приходится платить - в данном случае быстродействием оборудования сети и сравнительно большими - но предсказуемыми - задержками распространения информации. В то же время X.25 - универсальный протокол, позволяющий передавать практически любые типы данных. "Естественным" для сетей X.25 является работа приложений, использующих стек протоколов OSI. К ним относятся системы, использующие стандарты X.400 (электронная почта) и FTAM (обмен файлами), а также некоторые другие. Доступны средства, позволяющие реализовать на базе протоколов OSI взаимодействие Unix- систем.

Другая стандартная возможность сетей X.25 - связь через обычные асинхронные COM-порты. Образно говоря, сеть X.25 удлиняет кабель, подключенный к последовательному порту, донося его разъем до удаленных ресурсов. Таким образом, практически любое приложение, допускающее обращение к нему через COM-порт, может быть легко интегрировано в сеть X.25. В качестве примеров таких приложений следует упомянуть не только терминальный доступ к удаленным хост-компьютерам, например Unix-машинам, но и взаимодействие Unix-компьютеров друг с другом (cu, uucp), системы на базе Lotus Notes, электронную почту cc:Mail и MS Mail и т.п.

Для объединения LAN в узлах, имеющих подключение к сети X.25, существуют методы упаковки ("инкапсуляции") пакетов информации из локальной сети в пакеты X.25 Часть служебной информации при этом не передается, поскольку может быть однозначно восстановлена на стороне получателя. Стандартным механизмом инкапсуляции считается описанный в документе RFC 1356. Он позволяет передавать различные протоколы локальных сетей (IP, IPX и т.д.) одновременно через одно виртуальный соединение. Этот механизм (или более старая его реализация RFC 877, допускающая только передачу IP) реализован практически во всех современных маршрутизаторах.

Существуют также методы передачи по X.25 и других коммуникационных протоколов, в частности SNA, используемого в сетях IBM mainframe, а также ряда частных протоколов различных производителей. Таким образом, сети X.25 предлагают универсальный транспортный механизм для передачи информации между практически любыми приложениями. При этом разные типы трафика передаются по одному каналу связи, ничего "не зная" друг о друге. При объединении LAN через X.25 можно изолировать друг от друга отдельные фрагменты корпоративной сети, даже если они используют одни и те же линии связи. Это облегчает решение проблем безопасности и разграничения доступа, неизбежно возникающих в сложных информационных структурах. Кроме того, во многих случаях отпадает необходимость использовать сложные механизмы маршрутизации, переложив эту задачу на сеть X.25.

Сегодня в мире насчитываются десятки глобальных сетей X.25 общего пользования, их узлы имеются практически во всех крупных деловых, промышленных и административных центрах. В России услуги X.25 предлагают Спринт Сеть, Infotel, Роспак, Роснет, Sovam Teleport и ряд других поставщиков. Кроме объединения удаленных узлов в сетях X.25 всегда предусмотрены средства доступа для конечных пользователей. Для того чтобы подключиться к любому ресурсу сети X.25 пользователю достаточно иметь компьютер с асинхронным последовательным портом и модем. При этом не возникает проблем с авторизацией доступа в географически удаленных узлах - во-первых, сети X.25 достаточно централизованы.

С точки зрения безопасности передачи информации, сети X.25 предоставляют ряд весьма привлекательных возможностей. Прежде всего, благодаря самой структуре сети, стоимость перехвата информации в сети X.25 оказывается достаточно велика, что уже служит неплохой защитой. Проблема несанкционированного доступа также может достаточно эффективно решаться средствами самой сети. Если же любой - даже сколь угодно малый - риск утечки информации оказывается неприемлемым, тогда, конечно, необходимо использование средств шифрования, в том числе в реальном времени (для сетей X.25 такое оборудование производят компании Racal, Cylink, Siemens. Есть и отечественные разработки).

Недостатком технологии X.25 является наличие ряда принципиальных ограничений по скорости. Первое из них связано именно с развитыми возможностями коррекции и восстановления. Эти средства вызывают задержки передачи информации и требуют от аппаратуры X.25 большой вычислительной мощности и производительности, в результате чего она просто "не успевает" за быстрыми линиями связи. Хотя существует оборудование, имеющее двухмегабитные порты, реально обеспечиваемая им скорость не превышает 250 - 300 кбит/сек на порт. С другой стороны, для современных скоростных линий связи средства коррекции X.25 оказываются избыточными и при их использовании мощности оборудования часто работают вхолостую.

Вторая особенность, заставляющая рассматривать сети X.25 как медленные, состоит в особенностях инкапсуляции протоколов LAN (в первую очередь IP и IPX). При прочих равных условиях связь локальных сетей по X.25 оказывается, в зависимости от параметров сети, на 15-40 % медленнее, чем при использовании HDLC по выделенной линии. Причем чем хуже линия связи, тем выше потери производительности. Мы снова имеем дело с очевидной избыточностью: протоколы LAN имеют собственные средства коррекции и восстановления (TCP, SPX), но при использовании сетей X.25 приходится делать это еще раз, теряя скорость.

Именно на этих основаниях сети X.25 объявляются медленными и устаревшими. Но прежде чем говорить о том, что какая-либо технология является устаревшей, следует указать - для каких применений и в каких условиях. На линиях связи невысокого качества сети X.25 вполне эффективны и дают значительный выигрыш по цене и возможностям по сравнению с выделенными линиями. С другой стороны, даже если рассчитывать на быстрое улучшение качества связи - необходимое условие устаревания X.25 - то и тогда вложения в аппаратуру X.25 не пропадут, поскольку современное оборудование включает возможность перехода к технологии Frame Relay.


Frame Relay


Первые предложения по стандартам протокола Frame Relay были представлены в Консультативный комитет по международной телефонной и телеграфной связи (CCITT) в 1984 году. Несмотря на то что этот протокол уже был стандартизирован, существовали проблемы со взаимодействием его версий от разных поставщиков. Именно поэтому данная технология не получала широкой поддержки в промышленности вплоть до конца 1980-х годов.

Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи, обладает всеми преимуществами статистического уплотнения. Первоначально технология Frame Relay была стандартизирована как служба в сетях ISDN (Integrated Services Digital Network) со скоростью передачи данных до 2 Мбит/с. В дальнейшем эта технология получила самостоятельное развитие.

Frame Relay был создан в качестве замены протоколу X.25 для быстрых надёжных каналов связи, технология FR архитектурно основывалась на X.25 и во многом сходна с этим протоколом, однако в отличие от X.25, рассчитанного на линии с достаточно высокой частотой ошибок, FR изначально ориентировался на физические линии с низкой частотой ошибок, и поэтому большая часть механизмов коррекции ошибок X.25 в состав стандарта FR не вошла.

Процедура коррекции ошибок повышает достоверность передачи данных, но значительно увеличивает задержку в сети. При передаче голоса и другого чувствительного к задержке трафика, доставка пакета с задержкой, превышающей определенное значение, теряет смысл. В этом случае процедура коррекции ошибок не должна быть использована. Отсутствие коррекции ошибок в протоколе Frame Relay оказывается решающим, так как позволяет минимизировать задержку доставки пакетов.

В случае чувствительного к ошибкам трафика, такого как передача файлов, функция коррекции возлагается на более интеллектуальное оконечное оборудование.

В последнее время стремительному развитию технологии Frame Relay способствовали несколько основных факторов, и улучшение качества каналов связи - один из них. Естественно, что эта технология предъявляет определенные требования к качеству используемых каналов связи. Проведенные в России испытания полностью подтвердили предположение о возможности применения технологии Frame Relay на низкоскоростных каналах. Однако, далеко не все каналообразующее оборудование, представленное на российском рынке, обеспечивает необходимое качество передачи информации на отечественных каналах связи. Наиболее жизнеспособными оказались магистральные модемы фирмы Motorola.

Универсальные коммутаторы пакетов, использующие Frame Relay в качестве базового транспортного протокола, совмещают в себе несколько функций, основные из них:

статистическое уплотнение каналов передачи данных;

коммутация и передача различных видов трафика;

управление потоком и установка приоритетов;

поддержка функций телефонных станций.

Использование технологии FR обеспечивало ряд преимуществ по сравнению с технологиями X.25 и ISDN, которые использовались для обеспечения доступа к распределенным вычислительным ресурсам. В таблице приведены результаты сравнения вышеописанных технологий по некоторым параметрам с технологией FR.


Аппаратура для построения сетей Frame Relay. Сети X.25


В разработке спецификации принимали участие многие организации; многочисленные поставщики поддерживают каждую из существующих реализаций, производя соответствующее аппаратное и программное обеспечение.

В 1990 г. компании Cisco Systems, StrataCom, Northern Telecom и Digital Equipment Corporation образовали консорциум, целью которого было дальнейшее развитие технологии Frame Relay и обеспечение совместимости его версий от различных поставщиков. Эта группа производителей взяла за основу протокол Frame Relay, одобренный комитетом СС1ТТ, и добавила к нему расширения, позволяющие устройствам межсетевого взаимодействия оптимально обмениваться данными в сети Frame Relay. Эти расширения, называемые интерфейсом локального управления (Local Management Interface — LMI), обеспечивают возможность передачи данных с коммутацией пакетов через интерфейс между устройствами пользователя (например, маршрутизаторами, мостами, главными вычислительными машинами) и оборудованием сети (например, переключающими узлами). Устройства пользователя часто называют терминальным оборудованием (DTE), в то время как сетевое оборудование, которое обеспечивает согласование с DTE, часто называют устройством завершения работы информационной цепи (DCE). Сеть, обеспечивающая интерфейс Frame Relay, может быть либо общедоступная сеть передачи данных и использованием несущей, либо сеть с оборудованием, находящимся в частном владении, которая обслуживает отдельное предприятие.

В роли сетевого интерфейса, Frame Relay является таким же типом протокола, что и Х.25 (смотри Главу 13 "Х.25"). Однако Frame Relay значительно отличается от Х.25 по своим функциональным возможностям и по формату. В частности, Frame Relay является протоколом для линии с большим потоком информации, обеспечивая более высокую производительность и эффективность.

В роли интерфейса между оборудованием пользователя и сети, Frame Relay обеспечивает средства для мультиплексирования большого числа логических информационных диалогов (виртуальных цепей) через один физический канал передачи, которое выполняется с помощью статистики. Это отличает его от систем, использующих только технику временного мультиплексирования (TDM) для поддержания множества информационных потоков. Статистическое мультиплексирование Frame Relay обеспечивает более гибкое и эффективное использование доступной полосы пропускания. Оно может использоваться без применения техники TDM или как дополнительное средство для каналов, уже снабженных системами TDM.

Другой важной характеристикой Frame Relay является то, что она использует новейшие достижения технологии передачи глобальных сетей. Более ранние протоколы WAN, такие как Х.25, были разработаны в то время, когда преобладали аналоговые системы передачи данных и медные носители. Эти каналы передачи данных значительно менее надежны, чем доступные сегодня каналы с волоконно-оптическим носителем и цифровой передачей данных. В таких каналах передачи данных протоколы канального уровня могут предшествовать требующим значительных временных затрат алгоритмам исправления ошибок, оставляя это для выполнения на более высоких уровнях протокола. Следовательно, возможны большие производительность и эффективность без ущерба для целостности информации. Именно эта цель преследовалась при разработке Frame Relay. Он включает в себя алгоритм проверки при помощи циклического избыточного кода (CRC) для обнаружения испорченных битов (из-за чего данные могут быть отвергнуты), но в нем отсутствуют какие-либо механизмы для корректирования испорченных данных средствами протокола (например, путем повторной их передачи на данном уровне протокола).

Frame Relay не включает явно выраженных процедур управления потоком, которые являются избыточными для этих процедур в высших уровнях. Вместо этого предусмотрены очень простые механизмы уведомления о перегрузках, позволяющие сети информировать какое-либо устройство пользователя о том, что ресурсы сети находятся близко к состоянию перегрузки. Такое уведомление может предупредить протоколы высших уровней о том, что может понадобиться управление потоком.

Подобно протоколу Х.25, в протоколе Frame Relay используется метод коммутации пакетов и для передачи данных от отправителя к получателю в сети Frame Relay создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают двух видов:

постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;

коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи

На сегодня в большинстве сетей Frame Relay используются постоянные виртуальные каналы, так как технические решения работы с коммутируемыми виртуальными каналами только-только начали находить практическое воплощение. Протокол Frame Relay использует ту же самую технологию установки звонка, передачи данных и закрытия связи, которая была описана для протокола Х.25. Оконечные устройства, например маршрутизаторы, инициируют звонок в сети Frame Relay. После установки связи маршрутизатор передает данные и выполняет процедуру закрытия связи. Для постоянных виртуальных каналов звонок всегда активен, что позволяет маршрутизатору посылать данные без инициирования звонка.

Frame Relay поддерживает физический и канальный уровни OSI. Технология Frame Relay использует для передачи данных технику виртуальных соединений (коммутируемых и постоянных).

Стек протоколов Frame Relay передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. В Frame Relay функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. На канальном уровне в Frame Relay выполняется мультиплексирование потока данных в кадры.

Каждый кадр канального уровня содержит заголовок, содержащий номер логического соединения, который используется для маршрутизации и коммутации трафика. Frame Relay - осуществляет мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Таким образом, сеть коммутирует кадры, а не пакеты. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки.

Frame Relay ориентирована на цифровые каналы передачи данных хорошего качества, поэтому в ней отсутствует проверка выполнения соединения между узлами и контроль достоверности данных на канальном уровне. Кадры передаются без преобразования и контроля как в коммутаторах локальных сетей. За счет этого сети Frame Relay обладают высокой производительностью. При обнаружениях ошибок в кадрах повторная передача кадров не выполняется, а искаженные кадры отбраковываются. Контроль достоверности данных осуществляется на более высоких уровнях модели OSI.

Сети Frame Relay широко используется в корпоративных и территориальных сетях в качестве:

1) каналов для обмена данными между удаленными локальными сетями (в корпоративных сетях);

2) каналов для обмена данными между локальными и территориальными (глобальными) сетями.

Территориальная сеть передачи данных с интеграцией услуг - это территориально (географически) распределенная сеть, предназначенная для передачи трафика различной природы, с различными вероятностно-временными характеристиками и объединяющая в себе функции традиционных сетей передачи данных, традиционных телефонных сетей, пересылку факсимильных сообщений и предоставление современных видов услуг, таких как передача видеоизображения и видеоконференцсвязь.

Технология Frame Relay (FR) в основном используется для маршрутизации протоколов локальных сетей через общие (публичные) коммуникационные сети. Frame Relay обеспечивает передачу данных с коммутацией пакетов через интерфейс между оконечными устройствами пользователя DTE (маршрутизаторами, мостами, ПК) и оконечным оборудованием канала передачи данных DCE (коммутаторами сети типа "облако").

Коммутаторы Frame Relay используют технологию сквозной коммутации, т.е. кадры передаются с коммутатора на коммутатор сразу после прочтения адреса назначения, что обеспечивает высокую скорость передачи данных. В сетях Frame Relay применяются высококачественные каналы передачи, поэтому возможна передача трафика чувствительного к задержкам (голосовых и мультимедийных данных). В магистральных каналах сети Frame Relay используются волоконно-оптические кабели, а в каналах доступа может применяться высококачественная витая пара.

Аппаратура для построения сетей Frame Relay. Сети X.25

Рис. 3. Структурная схема сети Frame Relay.


На рисунке представлена структурная схема сети Frame Relay, где изображены основные элементы:

DTE (Data Terminal Equipment) – аппаратура передачи данных (маршрутизаторы, мосты, ПК).

DCE (Data Circuit-Terminating Equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).


Физический уровень Frame Relay


На физическом уровне Frame Relay используют цифровые выделенные каналы связи, протокол физического уровня I.430/431.


Канальный уровень Frame Relay


На канальном уровне поток данных структурируется на кадры, поле данных в кадре имеет переменную величину, но не более 4096 байт. Канальный уровень реализуется протоколом LAP-F. Протокол LAP-F имеет два режима работы: основной и управляющий. В основном режиме кадры передаются без преобразования и контроля.

В поле заголовка кадра имеется информация, которая используется для управления виртуальным соединением в процессе передачи данных. Так же, как в протоколе Х.25 используются адреса Х.121, протокол Frame Relay использует адреса, называемые идентификаторами канала соединения (data link connection identifiers — DLCI).

Frame relay обеспечивает множество независимых виртуальных каналов (Virtual Circuits) в одной линии связи, идентифицируемых в FR-сети по идентификаторам подключения к соединению (Data Link Connection Identifier, DLCI). Каждый идентификатор DLCI может иметь в сети Frame Relay локальное или глобальное значение. На сегодняшний день наиболее распространенной практикой является использование идентификаторов DLCI только с локальным значением. Это означает, что устройства, например маршрутизаторы, на разных сторонах виртуального канала в сети Frame Relay могут иметь один и тот же DLCI-номер, поскольку протокол Frame Relay предусматривает отображение локального DLCI-номера на виртуальный канал на каждом из коммутаторов, стоящих в глобальной сети.

Каждый кадр канального уровня содержит номер логического соединения, который используется для маршрутизации и коммутации трафика. При этом контроль правильности передачи данных от отправителя получателю осуществляется на более высоком уровне OSI.

Коммутируемые виртуальные каналы используются для передачи импульсного трафика между двумя устройствами DTE. Постоянные виртуальные каналы применяются для постоянного обмена сообщениями между двумя устройствами DTE.

Процесс передачи данных через коммутируемые виртуальные каналы осуществляется:

установление вызова - образуется коммутируемый логический канал между двумя DTE;

передача данных по установленному логическому каналу;

режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит;

завершение вызова - используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Процесс передачи данных через предварительно установленные PVC:

передача данных по установленному логическому каналу;

режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.


Дополнения LMI


Помимо базовых функций передачи данных протокола Frame Relay, спецификация консорциума Frame Relay включает дополнения LMI, которые делают задачу поддержания крупных межсетей более легкой:

Сообщения о состоянии виртуальных цепей (общее дополнение).

Обеспечивает связь и синхронизацию между сетью и устройством пользователя, периодически сообщая о существовании новых PVC и ликвидации уже существующих PVC, и в большинстве случаев обеспечивая информацию о целостности PVC. Сообщения о состоянии виртуальных цепей предотвращают отправку информации в "черные дыры", т.е. через PVC, которые больше не существуют.

Многопунктовая адресация (факультативное).

Позволяет отправителю передавать один блок данных, но доставлять его через сеть нескольким получателям.

Глобальная адресация (факультативное).

Наделяет идентификаторы связи глобальным, а не локальным значением, позволяя их использование для идентификации определенного интерфейса с сетью Frame Relay.

Простое управление потоком данных (факультативное).

Обеспечивает механизм управления потоком XON/XOFF, который применим ко всему интерфейсу Frame Relay. Он предназначен для тех устройств, высшие уровни которых не могут использовать биты уведомления о перегрузке и которые нуждаются в определенном уровне управления потоком данных.

Сообщения LMI передаются в информационной части кадра Frame Relay и обеспечивают передачу управляющей информации в направлении FRAD - сеть и обратно. Для передачи управляющих сообщений LMI используется специальный PVC #1023.


Формат кадра


Аппаратура для построения сетей Frame Relay. Сети X.25


Наименования и значения полей:

Поле Флаг

Каждый кадр начинается и замыкается «флагом» — последовательностью «01111110».

Данное поле выполняет функцию обрамления кадра. Принцип формирования поля FLAG в кадре Frame Relay соответствует принципам формирования поля FLAG в кадре LAPB.

Поле Адрес (Заголовок)

Поле Адрес кадра Frame Relay, кроме собственно адресной информации, содержит также и дополнительные поля управления потоком данных и уведомлений о перегрузке канала и имеет следующую структуру:

DLCI (6 Bit) C/R (1 Bit) EA (1 Bit) DLCI (4 Bit) FECN (1 Bit) BECN (1 Bit) DE (1 Bit) EA (1 Bit)

Центром заголовка Frame Relay является 10-битовое значение DLCI. Оно идентифицирует ту логическую связь, которая мультиплексируется в физический канал. В базовом режиме адресации (т.е. не расширенном дополнениями LMI), DLCI имеет логическое значение; это означает, что конечные устройства на двух противоположных концах связи могут использовать различные DLCI для обращения к одной и той же связи. На рис. 4 представлен пример использования DLCI при адресации в соответствии с нерасширенным Frame Relay.

Аппаратура для построения сетей Frame Relay. Сети X.25

Рис. 4. Адресация Frame Relay.


Рис. 4 предполагает наличие двух цепей PVC: одна между Aтлантой и Лос-Анджелесом, и вторая между Сан Хосе и Питтсбургом. Лос Анджелес может обращаться к своей PVC с Атлантой, используя DLCI=12, в то время как Атланта обращается к этой же самой PVC, используя DLCI=82. Аналогично, Сан Хосе может обращаться к своей PVC с Питтсбургом, используя DLCI=62. Сеть использует внутренние патентованные механизмы поддержания двух логически значимых идентификаторов PVC различными.

DLCI Data Link Connection Identifier — идентификатор виртуального канала (PVC), мультиплексируемого в физический канал. DLCI имеют только локальное значение и не обеспечивают внутрисетевой адресации.

C/R Command / Response — зарезервирован, в настоящее время не используется.

EA Address Field Extension Bit — бит расширения адреса. DLCI содержится в 10 битах, входящих в два октета заголовка, однако возможно расширение заголовка на целое число дополнительных октетов с целью указания адреса, состоящего более чем из 10 бит. EA устанавливается в конце каждого октета заголовка; если он имеет значение «1», то это означает, что данный октет в заголовке последний.

FECN Forward Explicit Congestion Notification — извещение о перегрузке канала в прямом направлении.

BECN Backward Explicit Congestion Notification — извещение о перегрузке канала в обратном направлении.

DE Discard Eligibility Indicator — индикатор разрешения сброса кадра при перегрузке канала. Выставляется в «1» для данных, подлежащих передаче в негарантированной полосе (EIR) и указывает на то, что данный кадр может быть уничтожен в первую очередь.

FCS (Frame Check Sequence) — содержит 16-ти разрядную контрольную сумму всех полей кадра Frame Relay за исключением поля "флаг".

Поле данных имеет минимальную длину в 1 октет, максимальную по стандарту Frame Relay Forum — 1600 октетов, однако в реализациях некоторых производителей FR-оборудования допускается превышение максимального размера (до 4096 октетов).


Параметры качества обслуживания Frame Relay


CIR (англ. Committed Information Rate) — гарантированная полоса пропускания виртуального канала PVC в сетях Frame Relay (FR). Сумма значений CIR всех PVC пользователя не должна превышать 75-80 процентов пропускной способности физического канала провайдера.

В первоначальном наборе стандартов (ANSI T1S1) CIR как отдельный параметр отсутствует, но для отдельного виртуального канала были определены параметры:

B(c) (bits committed), B(e) (bits

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: