Xreferat.com » Рефераты по информатике и программированию » Структурная схема адаптивной системы сжатия данных

Структурная схема адаптивной системы сжатия данных

данных" width="57" height="25" align="BOTTOM" border="0" />будут передаваться избыточные отсчеты, а при Структурная схема адаптивной системы сжатия данных будут возникать потери важных отсчетов.

Рассмотрим более подробно пути построения блока АП. Возможны три способа анализа погрешности аппроксимации:

параллельный;

последовательный;

параллельно-последовательный.

Наибольшим быстродействием и простотой обладает АП в случае параллельного анализа погрешности аппроксимации.


2.2 РТМС с адаптивной коммутацией каналов при параллельном

анализе погрешности


Рассмотрим один из вариантов построения структурной схемы системы (рисунок 8), где ВМС – выявитель максимального сигнала.

Сигнал с датчиков поступает на вход ППА и мультиплексора (МК). Мультиплексор находится в закрытом состоянии и открывается с поступлением тактовых импульсов с ГТИ.

Мультиплексор – это устройство, предназначенное для передачи сигналов с любого из входов на одну общую выходную шину.


Структурная схема адаптивной системы сжатия данных

Рисунок 8


Вход, с которого сигнал передается на выход, выбирается в зависимости от вида параллельного двоичного кода, подаваемого на управляющие входы. Сигнал с выхода ППА анализируется в блоке выявителя максимального сигнала (ВМС), который представляет собой схему сравнения на N входов. На выходе ВМС формируется параллельный двоичный код, соответствующий номеру канала с наибольшей погрешностью аппроксимации. При поступлении на МК тактовых импульсов с ГТИ на выход проходит сигнал канала, двоичный код номер которого воздействует на управляющие входы МК. После преобразования в АЦП сигнал в параллельном коде, а также код адреса записывается в память БС. При поступлении импульса считывания с ГТИ в БС происходит преобразование параллельного кода в последовательный, и сигнал передается в линию связи.

Рассмотрим простейшую схему ВМС с использованием диодных сборок (диодных схем ИЛИ) и операционных усилителей (ОУ), выходные сигналы которых являются двоичным кодом канала с максимальной погрешностью аппроксимации. Использование диодных сборок для выделения максимального напряжения основан на том, что между операциями алгебры логики и операциями выделения максимума и минимума существует аналогия. Действительно операция объединения соответствует нахождению максимума, а операция пересечения – минимуму.

Структурная схема адаптивной системы сжатия данных.


При построении схемы ВМС необходимо учитывать, что в случае соединения соответствующих входов ОУ при наличии максимального сигнала на одном из входов Структурная схема адаптивной системы сжатия данныхсоединение должно осуществляться исходя из следующих правил (рисунок 9):


Структурная схема адаптивной системы сжатия данных. ( 6)


При достаточном усилении ОУ, когда напряжение на прямом входе больше напряжения на инверсном входе, ОУ находится в режиме насыщения, и на выходе формируется единица. Если наоборот, то ОУ находится в режиме отсечки, и на выходе формируется нуль.


Структурная схема адаптивной системы сжатия данных

Рисунок 9


Для получения хороших результатов в этом случая необходимо, чтобы характеристики диодов были одинаковыми, поэтому применяют диодные сборки, а коэффициент усиления был не меньше 1000.


Глава 3. РТМС с автоматическим регулированием частоты опроса

датчиков


В этих РТМС предусматривается возможность установления различной частоты опроса датчиков, например, в системе МКТ - 1. Так, при аварийных ситуациях увеличение частоты опроса датчиков позволяет получить более подробную измерительную информацию о происходящих в контролируемом объекте процессов. При ручном переключении частоты опроса датчиков есть значительная вероятность опоздать с этим переключением.

Рассмотрим одну из возможных схем устройства для автоматического регулирования частоты опроса датчиков (рисунок 10).

Сигнал от датчиков поступает на вспомогательный коммутатор К1 и коммутатор К2. К коммутатору К2, работающему синхронно и синфазно с коммутатором К1 , подключают генератор импульсов (ГИ). Частота генератора импульсов ГИ выбирается много больше, чем максимальная частота спектра сигнала.


Структурная схема адаптивной системы сжатия данных

Рисунок 10


В дифференциальном усилителе (У) происходит сравнение значения напряжения Структурная схема адаптивной системы сжатия данных с Структурная схема адаптивной системы сжатия данных, взятым из ячейки аналоговой памяти. После выпрямления разностного сигнала в выпрямителе (В) этот сигнал поступает на амплитудный дискриминатор (АД), определяющий в каком из каналов наибольшая разность. Далее сигнал поступает на преобразователь напряжение-частота (ПНЧ). Частота переключений первичного сигнала Структурная схема адаптивной системы сжатия данныхкоммутатора К3 будет определяться каналом с наиболее быстро изменяющейся измеряемой величиной, что приводит к образованию избыточной информации в других каналах.

Определим частоту дискретизации Структурная схема адаптивной системы сжатия данных коммутатора К3 при предположении, что изменяется сигнал только в одном датчике.

Если приращение сигнала за время опроса Структурная схема адаптивной системы сжатия данных всех датчиков коммутаторами Структурная схема адаптивной системы сжатия данныхи Структурная схема адаптивной системы сжатия данных определяется выражением:


Структурная схема адаптивной системы сжатия данных, ( 7)


то частота дискретизации равна:


Структурная схема адаптивной системы сжатия данных , ( 8)


где Структурная схема адаптивной системы сжатия данных - минимальная частота дискретизации Структурная схема адаптивной системы сжатия данных, Структурная схема адаптивной системы сжатия данных- коэффициент регулирования. Частота опроса коммутаторов Структурная схема адаптивной системы сжатия данных и Структурная схема адаптивной системы сжатия данных равна:


Структурная схема адаптивной системы сжатия данных. ( 9)


Требуется определить значение коэффициента регулирования Структурная схема адаптивной системы сжатия данных.

Приращение функции можно заменить приближенным выражением:


Структурная схема адаптивной системы сжатия данных , ( 10)


где Структурная схема адаптивной системы сжатия данных - первая производная Структурная схема адаптивной системы сжатия данных.

При условии Структурная схема адаптивной системы сжатия данных, тогда:


Структурная схема адаптивной системы сжатия данных , ( 11)

Структурная схема адаптивной системы сжатия данных, ( 12)


Таким образом, частота дискретизации равна:


Структурная схема адаптивной системы сжатия данных . ( 13)


Частоты Структурная схема адаптивной системы сжатия данных выбирают исходя из требований к точности алгоритма интерполяции.

Недостаток РТМС с автоматической регулировкой частоты опроса датчиков: низкий коэффициент сжатия и сложность радиоприемного устройства. Усложнение структуры приемного устройства определяется тем, что отсчеты появляются не в тактовых точках.


Заключение


Радиосвязь - одно из самых простых и надежных средств связи. Рации полезны и удобны, их можно использовать там, где недоступен ни один другой вид связи, системы радиосвязи недороги по цене, легко развертываются и нетребовательны к условиям окружающей.

Наиболее характерными для современных РСПИ являются три формы представления сообщений, которые формируются на борту и передаются по линиям связи:

Сообщения о наличии/отсутствии некоторого априорно известного сообщения (включения/выключения двигателей, удары метеорита).

Сообщения о величинах характеризуют значения параметров в определенный момент времени.

Сообщения о процессах должны с заданной точностью воспроизводить процессы на определенном отрезке времени, т.е. в этом случае также необходимо производить калибровку амплитуды и масштабирование по времени.


Список литературы


Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А. Борисов, В.В. Калмыков, Я.М. Ковальчук и др.; Под ред. В.В. Калмыкова. М.: Радио и связь. 1990. 304с.

Системы радиосвязи: Учебник для вузов / Н.И. Калашников, Э.И. Крупицкий, И.Л. Дороднов, В.И. Носов; Под ред. Н.И. Калашникова. М.: Радио и связь. 1988. 352с.

Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации: Учебное пособие для вузов / М.: Радио и связь. 1982. 264с.

Кириллов С.Н., Стукалов Д.Н. Цифровые системы обработки речевых сигналов. Учебное пособие. Рязань. РГРТА, 1995. 80с.

Размещено на

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: