Xreferat.com » Рефераты по коммуникации и связи » Разработка тепловизионного канала СП-1 АСДМ "Лидар"

Разработка тепловизионного канала СП-1 АСДМ "Лидар"

Введение


При высокой плотности населения и промышленных предприятий в современных мегаполисах резко возрастает опасность массового поражения людей при неизбежно возникающих чрезвычайных ситуациях и экологических катастрофах (пожарах, взрывах с выделением ядовитых веществ, загрязнение атмосферы транспортом, промышленными предприятиями и др.).

В полной мере это относится к Москве, с тем отличием, что большой износ промышленного оборудования во много раз увеличивает вероятность возникновения кризисных (КС) и чрезвычайных ситуаций (ЧС). В связи с этим резко возрастает роль структур, занимающихся мониторингом и прогнозированием КС и ЧС. В механизме управления городским хозяйством особую роль играют системы оперативного предупреждения о чрезвычайных ситуациях: пожарах, взрывах, химических выбросах, экологических катастрофах и т.д. Как правило, подобные узкопрофессиональные системы предупреждения могут охватывать отдельные помещения, здания, районы города или весь город целиком. Задачи, решаемые подобными системами, во многом схожи.

В дипломной работе проводится разработка тепловизионного канала СП-1 АСДМ «Лидар» и его экспериментальное исследование на соответствие задачам мониторинга КС.

Автоматическая система дистанционного мониторинга «Лидар» предназначена для обнаружения кризисных и чрезвычайных ситуаций в городе Москва, одним из показателей которых является аварийный аэрозольный выброс в атмосферный воздух. Стационарный пост 1 (СП-1) работает в режиме круглосуточного оперативного мониторинга КС. Согласно концепции системы, планируется установка трёх СП с зоной охвата 10–12 км каждый, что позволит охватить всю территорию Москвы. СП-2, второй пост системы АСДМ «Лидар», является эволюционным продолжением СП-1. Совокупность решений, применённых в СП-1 и СП-2, послужат базой для разработки СП-3 – полностью автоматического поста.

Тепловизионный канал в составе АСДМ «Лидар» предназначен для ведения мониторинга в сложных метеорологических условиях, когда обычные камеры не позволяют вести наблюдение. В составе СП-1 тепловизионный канал убедительно доказал свою эффективность, позволяя отчётливо различать как шлейфы дыма, так и нагретые тела на фоне городской застройки.


1. Тепловизионные приборы и системы для задач мониторинга кризисных ситуаций в мегаполисе


В этой части дипломного проекта рассмотрены принципы построения тепловизионных систем мониторинга КС, выделены основные задачи систем такого рода. Проанализировано состояние современного уровня техники. Также были выдвинуты требования к тепловизионной системе СП-1, на основе которых сформулировано техническое задание.


1.1 Физические основы тепловизионных приборов


1.1.1 Историческая справка

Существование теплового излучения за пределами видимого спектра было открыто Уильямом Гершелем в 1800 г. С помощью термометра, помещаемого за красным участком солнечного спектра при прохождении излучения сквозь диспергирующую призму, Гершель обнаружил невидимое глазом излучение, несущее энергию и проявляющееся своим тепловым действием. Впоследствии он доказал, что это излучение, названное инфракрасным, подчиняется тем же законам, что и видимый свет.

Только в 1830 г. появились первые приемники инфракрасного излучения на основе принципа работы термопары, которые стали называть термоэлементами. Появление в 1880 г. терморезистивных материалов, т.е. материалов, электрическое сопротивление которых изменяется в зависимости от температуры (болометры), позволило существенно улучшить чувствительность приемников инфракрасного излучения.

В период 1870–1920 гг. прогресс техники обеспечил разработку первых фотонных приемников, основанных на прямом взаимодействии между фотонами излучения и электронами материала приемника. Природа обнаружения излучения здесь другая – речь идет уже не о возникновении электрического сигнала в ответ на тепловое воздействие, а о непосредственном преобразовании излучения в электрический сигнал. Эти приемники, фоторезисторы или фотодиоды, имеют гораздо большее быстродействие и более высокую чувствительность, чем тепловые приемники.

В период 1930–1944 гг. были разработаны приемники на основе сульфида свинца (PbS). Эти приемники чувствительны в спектральном диапазоне 1,5 ч3 мкм. В 1940–1950 гг. рабочий спектральный диапазон был расширен на среднюю инфракрасную область (3 ч5 мкм), когда появился приемник из антимонида индия (InSb), а в 1960-х гг. началось применение в более длинноволновом диапазоне 8 ч14 мкм приемников КРТ (кадмий – ртуть – теллур (HgCdTe)). Приемники этих типов требуют охлаждения.

Фотонные приемники благодаря высокой чувствительности и быстродействию позволили разработать термографические и тепловизионные системы, основанные на обнаружении инфракрасного излучения, испускаемого телами в интервале длин волн 2ч15 мкм.


1.1.2 Физические принципы

Материя непрерывно испускает и поглощает электромагнитное излучение. Процесс излучения связан с возбуждением молекул внутри вещества, в результате чего возникают излучательные переходы электронов. Выделяющаяся энергия уносится квазичастицами – квантами (фотонами) электромагнитного поля, имеющими энергию W.

Освобожденная в форме излучения энергия W характеризуется длиной волны л;


W = hc / л,


где h= 6,63*10-34 Дж*с – постоянная Планка, с = 3 * 108 м/с – скорость света.

Длина волны испускаемого излучения обратно пропорциональна энергии, выделившейся при переходе. Важно отметить в этой связи, что в инфракрасной области по сравнению с видимой длины волн велики и энергия соответственно мала. Это предопределяет трудности обнаружения отдельных фотонов инфракрасного излучения.

Если в веществе происходят все возможные переходы (тепловое возбуждение молекул), то каждый атом излучает определенную энергию, а в совокупности энергетические уровни принимают все возможные значения; распределение энергии по длинам волн в таком случае непрерывное и спектр испускания излучения непрерывный.

В некоторых средах разрешенными оказываются только вполне определенные переходы (квантованные переходы электрона внутри атома), излучение происходит тогда на дискретных длинах волн и спектр испускания излучения линейчатый. Явление поглощения излучения веществом является обратным процессом и может быть более или менее селективным на длинах волн, присущих рассматриваемой среде.

Спектр излучения произвольно делят на области по признаку функциональных особенностей источников или приемников излучения. Участки электромагнитного спектра показаны ниже в таблице 1.1.


Таблица 1.1. Спектр электромагнитного излучения

Космические лучи Гамма-лучи Рентгеновские лучи УФ-излучение
Инфракрасное излучение Радиоволны













свч укв вч пч нч

л 0,001Ǻ 0.1Ǻ 1Ǻ 10 Ǻ 100 Ǻ 0,1 мкм 1 мкм 10 мкм 100 мкм 0,1 см 1 см 10 см 1 м 10 м 100 м 1 км 10 км 100 км
н, Гц

3*1021 3*1019 3*1018 3*1017 3*1016 3*1015 3*1014 3*1013 3*1012 3*1010 3*108 3*106 3*104


Инфракрасный спектр соответствует области излучения вещества при температурах, наблюдаемых обычно на поверхности Земли. При этих температурах, называемых обычными, все тела имеют заметное излучение. Объект, который не должен наблюдаться в инфракрасной области, следует охлаждать. Так, для уменьшения в 100 раз излучения в окрестности л = 4 мкм объекта с температурой + 20°С его следует охладить примерно на сотню градусов.

С учетом характеристик приемников, используемых для обнаружения излучения, инфракрасную область делят на три больших участка – ближняя инфракрасная область (длины волн 0,75ч1,5 мкм), средняя инфракрасная область (длины волн 1,5ч20 мкм) и дальняя инфракрасная область (длины волн 20ч1000 мкм).

Инфракрасное излучение в ближней инфракрасной области обнаруживается специальными фотографическими эмульсиями (чувствительными в области до л = 1 мкм), фотоэлементами с внешним фотоэффектом, а также фоторезисторами и фотодиодами. В средней инфракрасной области инфракрасное излучение обнаруживается тепловыми приемниками, фоторезисторами и фотодиодами. В дальней инфракрасной области для обнаружения излучения применяются в основном тепловые приемники.

Спектр излучения черного тела можно рассчитать в соответствии с законом Планка:


dR (л, T)/dл= 2 рhc2 л-5/[exp (hc/ лkT) – 1] Bт/м3


Здесь dR (л, T)/dл – спектральная поверхностная плотность потока излучения, т.е. мощность излучения, испускаемого единицей поверхности черного тела в единичном интервале длин волн; h = 6,6256*10-34 Дж*с, или Вт*с2 – постоянная Планка; к = 1,38054*10-23 Дж/К – постоянная Больцмана; с =2,998* 108 м/с – скорость света; Т – абсолютная температура черного тела в Кельвинах.

Спектральная плотность потока излучения черного тела зависит от длины волны и от температуры. Удобно представить закон Планка в форме семейства кривых:


dR (л, T)/dл=fт(л)


Кривая спектрального распределения величины dR (л, T)/d л при заданном значении температуры T проходит через максимум. Смещение максимума в функции температуры описывается законом смешения Вина, который получают дифференцированием закона Планка:


л макс= 2898/ Т мкм,

dR(л макс T)/dл= 1,286*10-15Т5 Вт/см2*мкм


где температура Т выражена в Кельвинах.

Следовательно, объект при температуре окружающей среды Т = 290 К имеет максимум спектральной плотности потока излучения при л макс=10 мкм, в то время как Солнце, эффективная (кажущаяся) температура которого ~ 6000 К, имеет максимум при л макс=0,5 мкм. Заметим, что жидкий азот (Т = 77К) имеет максимум при л макс=38 мкм.

Закон смещения Вина наглядно объясняет сдвиг в сторону коротких волн максимума (видимого или невидимого) излучения тел по мере их нагрева.

Закон, получаемый интегрированием закона Планка по л в пределах от нуля до бесконечности называется законом Стефана – Больцмана. Он определяет интегральную плотность (мощность) потока излучения черного тела при температуре Т:


RT=уT4

у=2р5k4/15c2h3=5,67*1012 Вт/(см2*К4)=5,67*108 Вт(м2*К4) – постоянная Стефана – Больцмана.


Разработка тепловизионного канала СП-1 АСДМ "Лидар"

Рис. 1.1 Спектральное распределение поверхностной плотности потока излучения различных источников: 1 – Солнце, Т – 6000 К; 2 – излучение черного тела при температуре окружающей среды Т – 290 К; 3 – излучение черного тела при температуре Т=77 К


Физически RТ представляет собой площадь под кривой dR (л, T)/d л=fT(л).

Если закон планка проинтегрировать по диапазону длин волн ла – лb, то мы получим мощность излучения черного тела в этом диапазоне при температуре Т:


Разработка тепловизионного канала СП-1 АСДМ "Лидар"


где ла – нижняя граница диапазона, лb – верхняя граница.


Разработка тепловизионного канала СП-1 АСДМ "Лидар"

Рис. 1.2. Поверхностная плотность потока излучения в спектральной полосе


1.1.3 Приемники инфракрасного излучения

Приемники излучения являются незаменимыми элементами инфракрасных приборов и предназначены для преобразования энергии оптического излучения в электрическую (или какую-либо другую) энергию, более удобную для непосредственного измерения.

По принципу действия приемники делят на две большие группы: тепловые и фотонные. Тепловые приемники основаны на изменении тех или иных свойств при изменении температуры, образующейся под воздействием падающего лучистого потока, независимо от его спектрального состава. В фотонных приемниках имеет место прямое взаимодействие между падающими фотонами и электронами материала чувствительного элемента.

Среди тепловых приемников в последнее время большое распространение получили микроболометрические матрицы с максимумом чувствительности в диапазоне 8ч12 мкм. Принцип действия болометров основан на изменении электрического сопротивления полупроводника или металла при изменении температуры, вызванном воздействием падающего лучистого потока. Микроболометрические матрицы не требуют охлаждения.

Среди фотонных приемников распространены фоторезисторы, принцип действия которых основан на внутреннем фотоэффекте, заключающемся в образовании свободных электронов в твердом теле и изменении его электропроводности при поглощении квантов излучения. Различают три группы фоторезисторов: пленочные, монокристаллические и легированные примесями. К первой группе относят сернисто-свинцовые (PbS), селенисто-свинцовые (PbSe) и теллуристо-свинцовые (РbТе) фоторезисторы. Вторую группу составляют фоторезисторы из антимонида индия (lnSb) и теллуридов ртути и кадмия (HgСdTe); третью группу – фоторезисторы из германия (Ge), легированного различными примесями.


Разработка тепловизионного канала СП-1 АСДМ "Лидар"

Рис. 1.3. Энергетические зоны в фоторезисторе


В фоторезисторе дискретные энергетические уровни, которые занимают электроны, образуют зоны. Наивысшую энергетическую зону, полностью заполненную электронами, называют валентной. Более высокую энергетическую зону, которая может быть и не заполненной электронами, называют зоной проводимости. Проводимость материала определяется электронами, находящимися в зоне проводимости. В соответствии с квантово-механическими условиями между валентной зоной и зоной проводимости находится запрещенная энергетическая зона.

Проводник характеризуется частичным заполнением зоны проводимости; в изоляторе запрещенная энергетическая зона настолько широка (3 эВ и более), что энергия валентных электронов недостаточна для их перехода в зону проводимости, поэтому в ней отсутствуют электроны (рис. 1.3 б). Полу проводник занимает промежуточное положение между проводником и изолятором. В нем ширина запрещенной зоны настолько мала (доли электронвольта), что даже при комнатной температуре энергия некоторых валентных электронов достаточна для их перехода через запрещенную зону в зону проводимости (рис. 1.3 в). Состояния, ранее занятые этими электронами, называют дырками.

Под действием электрического или магнитного полей дырки могут перемещаться аналогично электронам, но в противоположном направлении. Следовательно, в чистом полупроводнике переход электрона в зону проводимости создает электронно-дырочную пару носителей заряда, повышающую проводимость. Этот вид проводимости называют собственной проводимостью. Падающие на полупроводник фотоны отдают свою энергию валентным электронам, которые переходят в зону проводимости и образуют электронно-дырочные пары, изменяющие проводимость полупроводника (явление фото проводимости).

Пороговую длину волны л0, за которой энергия фотона недостаточна дли создания электронно-дырочной пары, называют длинноволновой границей и определяют следующим отношением: л0=1,24/Езапр. мкм, где Езапр. – ширина запрещенной зоны, эВ.

Приемники излучения с собственной проводимостью имеют ширину запрещенной зоны при комнатной температуре Езапр. ≥0,18 эВ, поэтому для них л0< 7 мкм. При охлаждении ширина запрещенной зоны уменьшается и длинноволновая граница приемника увеличивается. Такой же эффект может быть получен введением небольших количеств примесей других чистых полупроводников; этот процесс называют легированием, а полученные материалы – примесными полупроводниками.

Если примесный атом имеет меньшее количество валентных электронов чем основной материал, то недостающие ковалентные связи обеспечиваются соседними атомами; в результате этого возникают дырки в валентной области, которые становятся зарядоносителями и образуют материал р-типа.

Примеси, приводящие к недостатку электронов, называют акцепторными, так как они акцептируют (забирают) электроны из основного материала.

Если примесный атом имеет большее количество валентных электронов, чем основной материал, то он действует как донор электронов и в результате образуется материал n-типа. Во всех приемниках инфракрасного излучения используют материал р-типа.

Для получения приемника, чувствительного в длинноволновой области, выбирают материал с узкой запрещенной зоной. Но чем уже запрещенная зона, тем больше носителей, возбужденных не фотонами, а термическим путем. В первом приближении считают, что фоторезисторы, чувствительные к излучению с длиной волны до 3 мкм, не требуют охлаждения; а диапазоне 3ч8 мкм необходимо умеренное охлаждение (до 77К), а для фоторезисторов, работающих в диапазоне 8 ч14 мкм, необходимо глубокое охлаждение (несколько кельвинов).

Фоторезистор подключают к источнику питания последовательно с нагрузочным резистором. При облучении чувствительной площадки изменяется ее электрическое сопротивление; паление напряжения на нагрузочном резисторе представляет собой рабочий сигнал, который через емкостную связь подают в предусилитель.


1.2 Особенности построения тепловизионных систем контроля кризисных ситуаций


1.2.1 Рабочий диапазон температур

Тепловизионные системы контроля кризисных ситуаций в мегаполисе предназначены для наблюдения панорамы городской застройки, при колебаниях температуры окружающей среды в пределах от -40 до +400С (233ч3130К). При этом в зоне кризисной ситуации температура, как правило, не превышает температуру окружающей среды более чем на 2000С и не ниже ее более чем на 500С. При этом, в какой либо зоне, колебания температуры могут быть и выше и ниже указанных значений, но для определения их чрезвычайного характера такого запаса более чем достаточно. Так, например, нагрев стены здания на 100С выше температуры окружающей среды уже дает повод для изучения ситуации в этой точке панорамы. Поэтому чувствительность канала к разнице температур (температурный контраст) должна быть не хуже 50С, т.е. с двукратным запасом на помехи, налагаемые атмосферой. По тем же соображениям для обнаружения зон КС достаточно погрешности измерения температуры 50С.

Соответственно диапазон рабочих температур для системы контроля кризисных ситуаций в условиях мегаполиса от -50 до +2400С (223ч5130К), максимальная спектральная плотность потока излучения соответствует диапазону длин волн лмакс ≈ от 13 до 5,6 мкм.


1.2.2 Пространственное разрешение

Исходя из конфигурации АСДМ «Лидар», частью которой является СП-2, диапазон дальности его действия составляет 0,5ч12 км, этому же требованию должна соответствовать и ТепСКО. При этом тепловизионная система наблюдает панораму городской застройки, на которой необходимо выделять зоны или тела с аномальной температурой, это могут быть стены зданий, выбросы дыма и пара, а также открытое пламя. Размеры таких объектов, как правило, не менее 20х20 м, однако могут сильно отличаться в начальной и конечной стадии своего развития. Например, по мере разгорания пожара увеличивается его площадь, а шлейф выбрасываемого дыма может значительно превышать по площади 50х50 м.

В условиях мегаполиса большинство удаленных строений перекрыты городской застройкой, поэтому КС на дальности 8 – 12 км, в большинстве случаев, возможно зарегистрировать только по выбросам нагретых аэрозолей. Исходя из этого, системе, для уверенного обнаружения КС, достаточно различать на расстоянии 12 км объекты размером 50х50 м, что соответствует мгновенному полю зрения около 4 мрад. Это позволит различать на 8 км объекты минимальным размером 25х25 м.

Поэтому в тепловизионном канале СП-1 необходимо использовать тепловизионную камеру с мгновенным полем зрения < 4 мрад.


1.2.3 Особенности городской атмосферы. Выбор спектрального окна работы ИК-камеры

В современном городе состояние атмосферы далеко от идеального как для проживания человека, так и для функционирования тепловизионных систем мониторинга КСЧС. В результате деятельности промышленных предприятий воздушный бассейн загрязнен различными газами, также характерны дымка, образование тумана, высокая влажность. Когда излучение проходит через большую толщу атмосферы, проявляются полосы поглощения присутствующего в атмосфере водяного пара. Эта составляющая атмосферы в значительной мере определяет поглощение в инфракрасной области. Из других газов важнейшим является углекислый газ, поглощающее действие которого слабее, чем паров воды.

Основные полосы поглощения водяного пара расположены на участках 2,6 мкм, между 5,5 и 7,5 мкм и за пределами 20 мкм; в этих полосах излучение поглощается практически полностью на длине трассы 100 м и более. Следует отметить очень важное для практических применений обстоятельство – существование определенного числа прозрачных участков, окон прозрачности, т.е. областей, внутри которых поглощение очень слабое. Эти окна расположены в следующих интервалах длин волн 0,4ч1,0 мкм, 1,2ч1,3 мкм, 1,5ч1,8 мкм, 2,1ч2,5 мкм, 3ч5 мкм, 8ч13 мкм.

Последнее окно (8ч13 мкм), в котором хотя и сохраняется слабое поглощение, имеет очень большое значение, поскольку оно соответствует по длинам волн максимуму теплового излучения тел при окружающей температуре. Окно 3ч5 мкм выгодно использовать для обнаружения более нагретых тел или объектов, сильно излучающих в этом диапазоне (например, в случае излучения полосы углекислого газа – остатка практически всех продуктов сгорания).


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.4. Пропускание атмосферы на трассе 1,8 км, на уровне моря при толщине слоя осажденной воды 17 мм


Пропускание атмосферы зависит от длины трассы, а также от метеорологических условий. Измерения и расчеты спектрального коэффициента ослабления излучения атмосферой позволяют определить наиболее благоприятные для проведения измерений спектральные области.

Если этот фактор довольно слабо действует на очень коротких дистанциях, то этого уже нельзя сказать для расстояний в несколько сотен метров, на которых атмосфера не только поглощает часть излучения, но и добавляет собственное излучение на трассе. В общем случае очень влажная атмосфера оказывает большее влияние в диапазоне 8ч12 мкм, тогда как аэрозоли и дымка особенно неблагоприятны для диапазона 3ч5 мкм. Необходимо также отметить очень сильное поглощение углекислым газом в интервале длин волн 4,2ч4,4 мкм.

Если на коротких дистанциях, влияние пропускания атмосферы мало (оно очень хорошее в обоих диапазонах: и в 3ч5 мкм, и в 8ч12 мкм), то на больших дистанциях выигрывает диапазон 8ч12 мкм. Мощность испускаемого объектом излучения после прохождения через атмосферу, оптику и фильтры должна достигнуть приемника, имея величину, превышающую величину шума. Следовательно, при низких температурах на пороге обнаружения в канале 3ч5 мкм сигнал более близок по величине к шумам. Отношение сигнала к шуму в этом канале меньше, чем в канале 8ч12 мкм.


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.5 Спектральное пропускание атмосферы


Помимо пропускания атмосферы важным фактором является поверхностная плотность (мощность) излучения самого наблюдаемого объекта при разных температурах в данных спектральных диапазонах.


Таблица 1.2. Поверхностная плотность потока в спектральных полосах 3,5–5,5 и 8–14 при разных температурах

ла

мкм

лb

мкм

Т=280К

[Вт/см2]

Т=290К

[Вт/см2]

Т=300К

[Вт/см2]

Т=310К

[Вт/см2]

Т=750К

[Вт/см2]

Т=1000К

[Вт/см2]

3.5 5,5 5,36∙10-4 7,73∙10-4 1,09∙10-3 1,50∙10-3 5,68∙10-1 2,38
8 14 1,26∙10-2 1,48∙10-2 1,74∙10-2 2,01∙10-2 3,34∙10-1 6,05

Как видно из таблицы 1.2 в диапазоне длин волн 8ч14 мкм мощность излучения, испускаемая слабо нагретыми телами, значительно выше, чем в диапазоне 3,5ч5,5 мкм.

Указанные недостатки диапазона 3ч5 мкм частично компенсируются лучшей обнаружительной способностью. Это означает, что при одинаковых площадях фоточувствительного элемента и одинаковых электрических полосах пропускания приемники 3ч5 мкм чувствительны к более слабым сигналам, чем приемники 8ч12 мкм.

Также необходимо учесть влияние теплового контраста, характеризующего дифференциальную чувствительность измерений.

Кривые изменения теплового контраста для спектральных интервалов 3ч 5 и 8ч14 мкм показывают, что для данного перепада температур ∆T=Т0 - Tf в окрестности определенной окружающей температуры тепловые контрасты изображения в интервале длин волн 3,5ч5,5 мкм превосходят тепловые контрасты в интервале длин волн 8ч14 мкм.


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.6 Тепловые контрасты спектральной Рис. 1.7 Тепловые контрасты спектральной области области ∆л=3,5ч5,5 мкм ∆л=8ч 14 мкм


Для системы тепловизионного мониторинга КС возможно использование как диапазона 3ч5 мкм, так и диапазона 8ч12 мкм. Диапазон 3ч5 мкм позволяет наблюдать слабоконтрастные объекты, что необходимо при ведении мониторинга, также помимо лучшего температурного контраста, на этот диапазон приходится максимум спектра излучения факела пламени и большинства строительных материалов. А диапазон 8ч12 мкм более выгоден на длинных дистанциях и соответствует наблюдаемому диапазону температур. Поэтому оптимальным решением для задач мониторинга является использование двух диапазонов одновременно, что позволит совместить их преимущества и сгладить недостатки. 1.3. Состояние рынка тепловизионных камер


1.4 Тепловизионные системы контроля КС


На сегодняшний день в России не существует систем тепловизионного контроля КС за исключением ТепСКО СП-1 АСДМ «Лидар». Представленные на рынке системы предназначены для охранной, поисково-спасательной деятельности, медицинской диагностики, а также нужд промышленности и мало подходят для мониторинга КС.

В настоящее время в системе «АСДМ-Лидар» в тепловизионном канале СП-1 используется тепловизор «Скат». Поле зрения объектива тепловизора «Скат» равно 18х14 угл. град., причём конструкция тепловизора позволяет использовать объективы с меньшим полем зрения для обеспечения надёжного обнаружения КС (на предельных расстояниях), сопровождающихся тепловыми выбросами. Тепловизор «Скат» работает в диапазоне 8ё13 мкм, имеет разрешение 320х240 точек, не требует охлаждения жидким азотом. Интерфейс связи с компьютером RS-485. Для вывода изображения в телевизионном стандарте используется цифро-аналоговый преобразователь, установленный между системным блоком компьютера и его монитором.

Тепловизор установлен на опорно-поворотное устройство, позволяющее направлять его на нужный сектор панорамы. Поле зрения тепловизора совпадает с полем визирующей камеры.

Система функционирует с 2007 г. по нынешний день и в ходе реальной эксплуатации показала пригодность тепловизора «Скат» для мониторинга КС. Частота кадров 25 Гц позволяет вести мониторинг в реальном времени.

ТепСКО СП-1 при хороших погодных условиях обеспечивает видимость до 12 км (Останкинская телебашня на рис. 1.8). Для СП-1 существуют два штатных тест-объекта: здание завода «Фрезер» находящееся на расстоянии 800 м от поста и здание НИИ «Орион» на расстоянии 2 км. Тепловизионный канал СП-1 дает возможность получать контрастное изображение дымов на фоне городской застройки и неба.


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.8 Останкино, Скат. МДВ -13 км, температура -10С, влажность 75%


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.9 Тест-объект «Орион», Скат. МДВ -13 км, температура 110С, влажность 60%


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.10 Тест-объект «Фрезер», Скат. МДВ -14 км, температура 130С, влажность 50%


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 1.11 Дым на фоне неба, Скат. МДВ -10 км, температура -50С, влажность 83%


1.5 Постановка задачи


Тепловизионная система кругового обзора (ТепСКО) СП-1

Наименование параметра

Значение

Предельная дальность обнаружения АТВ, имеющих размеры не менее 50 х 50 м:

- при МДВ > 15 км, км - в тумане при МДВ < 15 км, км


Диапазон рабочих ИК волн, мкм

Поле зрения тепловизионной камеры:

- по азимуту

- по углу места

Мгновенное поле зрения, мрад.

Диапазон углов наведения тепловизионной камеры (обеспечивается приводами ОСН):

- по азимуту

- по углу места

Температурный контраст, 0С

Условия работы тепловизора:

- диапазон температур, 0С

- влажность, %


і 10

уточняют при опытной эксплуатации СП-1

3ч5 или 8ч12


і 10–110

і 10–110

< 4


от 0 до і 3600

± 150

<5

открытая атмосфера

-40 ч +40

до 100

Постановка задачи

Согласно техническому заданию разработать тепловизионный канал анализа КС/ЧС для стационарного поста СП-1 АСДМ «Лидар».

Тепловизионный канал должен включать в себя:

– тепловизионную камеру, имеющую окно спектральной чувствительности в диапазоне 3ч5 мкм или 8ч12 мкм;

– сканирующее устройство;

– персональный компьютер на рабочем месте оператора со специальным программным обеспечением.

При разработке необходимо учесть возможность модернизации системы с заменой отдельных узлов или без таковой. А также проанализировать возможность доработки системы до полностью автоматической. Т.е. возможность ввода изображения в программу «Alarm» для автоматического распознавания зон КС.


2. Разработка оптико-электронной схемы тепловизионного канала


В этой главе производится обоснованный выбор тепловизионной камеры, а также разработка оптико-электронной схемы канала на основе выбранной камеры. Приведено описание применяемых решений и устройств.

тепловизионный камера мониторинг

2.1 Тепловизионные системы контроля КС


На сегодняшний день в России не существует систем тепловизионного контроля КС за исключением ТепСКО СП-1 АСДМ «Лидар», развитием которой является разрабатываемый ТепСКО СП-2. Представленные на рынке системы предназначены для охранной, поисково-спасательной деятельности, медицинской диагностики, а также нужд промышленности и мало подходят для мониторинга КС.

Для тепловизионного канала СП-1 необходимо выбрать тепловизионную камеру, удовлетворяющую поставленным условиям. На данный момент наиболее пригодными для задач мониторинга являются:

Тепловизор «ИРТИС-200»;

Тепловизор «Скат».


2.2 Тепловизор «ИРТИС-2000»


Описание работы и функций тепловизора «ИРТИС-2000»

Пригодным для использования в тепловизионном канале СП-1 является тепловизор ИРТИС-2000, имеющий электромеханическую развёртку с периодом обновления информации 1,5 сек., что налагает существенные ограничения на быстродействие автоматизированной системы обнаружения ЧС в ИК диапазоне. Поле зрения объектива тепловизора ИРТИС-2000 равно 20х20 угл. град., причём конструкция тепловизора не позволяет использовать объективы с меньшим полем зрения для обеспечения надёжного обнаружения КС (на предельных расстояниях), сопровождающихся тепловыми выбросами. Тепловизор ИРТИС-2000 работает в диапазоне 3ё5 мкм, имеет разрешение 256х256 точек, требует охлаждения жидким азотом. Интерфейс связи с компьютером RS-485. Для вывода изображения в телевизионном стандарте используется цифро-аналоговый преобразователь, установленный между системным блоком компьютера и его монитором.

Тепловизор установлен на опорно-поворотное устройство, позволяющее направлять его на нужный сектор панорамы. Поле зрения тепловизора совпадает с полем визирующей камеры. Для защиты от внешней среды тепловизионная камера установлена в гермобокс, в котором, за счет обогрева и вентиляции, поддерживаются оптимальные для ее работы климатические условия.

Система в ходе реальной эксплуатации показала пригодность тепловизора ИРТИС-200 для мониторинга КС. Так времени формирования кадра 1,5 с. оказалось вполне достаточно для наблюдения за реальными КС, одной заправки жидким азотом хватает на срок до 6 часов непрерывной работы.

Тепловизор «ИРТИС-2000» представляет собой прецизионный оптико-механический сканирующий инфракрасный прибор для визуализации и измерения тепловых полей.

Принцип работы «ИРТИС-2000» основан на сканировании излучения в поле зрения камеры оптико-механическим сканером с одноэлементным высокочувствительным ИК-приемником (рисунок 2.1). При этой схеме разрешение 320х240 соответствует 240 строкам, в каждой из которых, считывание сигнала с ИК-приемника производится 320 раз. Сканирование по вертикали обеспечивает зеркало 1, а по горизонтали зеркало 2. Помимо этого зеркало 1 выдает импульс начала кадра, а зеркало 2 начала строки. Излучение, прошедшее через зеркальный сканер, фокусируется объективом на фотоприемник. Объектив камеры может быть сфокусирован на разные расстояния, для чего на правой стороне корпуса тепловизора, имеется регулировочная ручка (рисунок 2.2).

Входной иллюминатор тепловизионной камеры изготовлен из тонкой пленки прозрачной для ИК-излучения, однако имеющей низкую устойчивость к механическим воздействиям.

В тепловизионной камере установлен фотоприемник из антимонида индия (InSb) с максимумом спектральной чувствительности в диапазоне длин волн 3ч5 мкм, который для работы требует охлаждения до 720К. Охлаждение обеспечивается заливкой жидкого азота в криостат, к которому и прикреплен фотоприемник. Согласно данным производителя одной заливки криостата жидким азотом хватает более чем на 5 часов работы.


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 2.1 Схема работы тепловизора «ИРТИС-2000»


Разработка тепловизионного канала СП-1 АСДМ &amp;quot;Лидар&amp;quot;

Рис. 2.2 Общий вид тепловизора «Иртис» в процессе установки в гермобокс

Аналоговый сигнал от поступающий от ИК-приемника, а также задающие импульсы от зеркал, мультиплексируются и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: