Xreferat.com » Рефераты по математике » Использование дифференциальных уравнений в частных производных для моделирования реальных процессов

Использование дифференциальных уравнений в частных производных для моделирования реальных процессов

Министерство общего и профессионального образования

Сочинский государственный университет туризма

и курортного дела

Педагогический институт

Математический факультет


Кафедра общей математики


ДИПЛОМНАЯ РАБОТА


Использование дифференциальных уравнений в частных производных для моделирования реальных процессов.


В

подпись

ыполнила: студентка 5-го курса

дневной формы обучения

Специальность 010100

„Математика”

Прокофьевой Я. К.

Студенческий билет № 95035


Н

подпись

аучный руководитель: доцент, канд.

техн. наук

Позин П.А.


Сочи, 2000 г.

СОДЕРЖАНИЕ


Введение………………………………………………………………………..……3

Глава 1. Уравнения гиперболического типа.

§1.1. Задачи, приводящие к уравнениям гиперболического типа..………………5

1.1.1. Уравнение колебаний струны..…………………………………………5

1.1.2. Уравнение электрических колебаний в проводах…….………………8

§1.2. Метод разделения переменных ……………………………………………..10

1.2.1. Уравнение свободных колебаний струны….…………………………10

Глава 2. Уравнения параболического типа.

§2.1. Задачи, приводящие к уравнениям параболического типа………………..17

2.1.1. Уравнение распространения тепла в стержне.……………………….17

2.1.2. Распространение тепла в пространстве.………………………………19

§2.2. Температурные волны.……………………………………………………….23

Глава 3. Моделирование с помощью дифференциальных уравнений в частных производных.

§3.1. Дифракция излучения на сферической частице……………………………29

Заключение………………………………………………………………………….40

Литература…………………………………………………………………………..41


ВВЕДЕНИЕ


Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом «Интегральном исчислении» Л. Эйлера.

Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция U + V при любых постоянных и снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.

Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.

Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.

Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.

Глава 1. УРАВНЕНИЯ ГИПЕРБОЛИЧЕСКОГО ТИПА

§1.1. Задачи, приводящие к уравнениям гиперболического типа.


Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа

называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.


1.1.1. Уравнение колебаний струны.

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины в начальный момент направлена по отрезку оси Оx от 0 до . Предположим, что концы струны закреплены в точках . Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией , которая дает величину перемещения точки струны с абсциссой x в момент t.

u



M

M1

M2



x

0

x

x1

x2



Рис. 1.1.

Так как мы рассматриваем малые отклонения струны в плоскости , то будем предполагать, что длина элемента струны равняется ее проекции на ось Ox, т.е. .1 Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.

Рассмотрим элемент струны .



M




x

x

0



Рис. 1.2.

На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы . Тогда проекция на ось Ou сил, действующих на элемент , будет равна . Так как угол мал, то можно положить , и мы будем иметь:

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть - линейная плотность струны. Тогда масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь:

.

Сокращая на и обозначая , получаем уравнение движения

. (1)

Это и есть волновое уравнение – уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны , и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, как мы предполагали, концы струны при неподвижны. Тогда при любом t должны выполнятся равенства:

(2’)

(2’’)

Эти равенства являются граничными условиями для нашей задачи.

В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть

(3’)

Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией . Таким образом, должно быть

(3’’)

Условия (3’) и (3’’) являются начальными условиями.

Замечание. В частности, может быть или . Если же и , то струна будет находится в покое, следовательно, .


1.1.2. Уравнение электрических колебаний в проводах.


Как указывалось выше, к уравнению (1) приводит и задача об электрических колебаниях в проводах. Электрический ток в проводе характеризуется величиной i (x, t) и напряжением v (x, t), которые зависят от координаты x точки провода и от времени t. Рассматривая элемент провода , можем написать, что падение напряжения на элементе равно . Это падение напряжения складывается из омического, равного , и индуктивного, равного . Итак,

(4)

где R и L – сопротивление и коэффициент индуктивности, рассчитанные на единицу длины провода. Знак минус взят потому, что ток течет в направлении, обратном возрастанию v. Сокращая на , получаем уравнение

(5)

Далее, разность токов, выходящего из элемента и входящего в него за время , будет

Она расходуется на зарядку элемента, равную , и на утечку через боковую поверхность провода вследствие несовершенства изоляции, равную (здесь А – коэффициент утечки). Приравнивая эти выражения и сокращая на , получим уравнение

(6)

Уравнения (5) и (6)принято называть телеграфными уравнениями.

Из системы уравнений (5) и (6) можно получить уравнение, содержащее только искомую функцию i (x, t), и уравнение, содержащее только искомую функцию v (x, t). Продифференцируем члены уравнения (6) по x; члены уравнения (5) продифференцируем по t и умножим их на С. Произведя вычитание, получим:

Подставляя в последнее уравнение выражение из уравнения (5), получим:

или

(7)

Аналогичным образом получается уравнение для определения v (x, t):

(8)

Если пренебречь утечкой через изоляцию и сопротивлением , то уравнения (7) и (8) переходят в волновые уравнения:

где обозначено: . Исходя из физических условий, формулируют граничные и начальные условия задачи.


§1.2. Метод разделения переменных.


1.2.1. Уравнение свободных колебаний струны.


Метод разделения переменных или метод Фурье, является одним из наиболее распространенных методов решения уравнений с частными производными. Изложение этого метода мы проведем для задачи о колебаниях струны, закрепленной на концах. Итак, будем искать решение уравнения

удовлетворяющее однородным граничным условиям

(9)

и начальным условиям

(10)

Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти искомое решение.

Поставим основную вспомогательную задачу: найти решение уравнения

не равное тождественно нулю, удовлетворяющее однородным граничным условиям

(11)

и представимое в виде произведения

(12)

где X (x) – функция только переменного x, T (t) – функция только переменного t.

Подставляя предполагаемую форму решения (12) в уравнение (1), получим:

или, после деления на XT,

(13)


Чтобы функция (12) была решением уравнения (1), равенство (13) должно удовлетворяться тождественно, т. е. 0 ‹ х ‹ , t › 0. Правая часть равенства (13) является функцией только переменного t, а левая – только х. Фиксируя, например, некоторое значение х и меняя t (или наоборот), получим, что правая и левая части равенства (13) при изменении своих аргументов сохраняют постоянное значение

(14)

где – постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.

Из соотношения (14) получаем обыкновенные дифференциальные уравнения для определения функций X (x) и T (t)

(15)

(16)

Граничные условия (11) дают:

Отсюда следует, что функция X (x) должна удовлетворять дополнительным условиям:

X(0) = X() = 0, (17)

Так как иначе мы имели бы

в то время как задача состоит в нахождении нетривиального решения. Для функции T (t) в основной вспомогательной задаче никаких дополнительных условий нет.

Таким образом, в связи с нахождением функции X (x) мы приходим к простейшей задаче о собственных значениях:

найти те значения параметра
Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: