Xreferat.com » Рефераты по математике » Классификация групп с перестановочными обобщенно максимальными подгруппами

Классификация групп с перестановочными обобщенно максимальными подгруппами

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра алгебры и геометрии

Курсовая работа

Классификация групп с перестановочными обобщенно максимальными подгруппами

Исполнитель:

Студентка группы М-32 Лапухова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Скиба М.Т.

Гомель 2005


Содержание

Перечень условных обозначений

Введение

1. Классификация групп с перестановочными обобщенно максимальными подгруппами

2. Группы с -перестановочными -максимальными подгруппами

3. Группы, в которых -максимальные подгруппы перестановочны с -максимальными подгруппами

4. Группы, в которых максимальные подгруппы перестановочны с -максимальными подгруппами

Заключение

Литература


Перечень условных обозначений

В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами  обозначаются простые числа.

Будем различать знак включения множеств  и знак строгого включения ;

 и  - соответственно знаки пересечения и объединения множеств;

 - пустое множество;

 - множество всех  для которых выполняется условие ;

 - множество всех натуральных чисел;

 - множество всех простых чисел;

 - некоторое множество простых чисел, т.е. ;

 - дополнение к  во множестве всех простых чисел; в частности, ;

примарное число - любое число вида ;

Пусть  - группа. Тогда:

 - порядок группы ;

 - порядок элемента  группы ;

 - единичный элемент и единичная подгруппа группы ;

 - множество всех простых делителей порядка группы ;

 - множество всех различных простых делителей натурального числа ;

-группа - группа , для которой ;

-группа - группа , для которой ;

 - подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;

 - подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;

 - наибольшая нормальная -нильпотентная подгруппа группы ;

 - коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

 - -ый коммутант группы ;

 - наибольшая нормальная -подгруппа группы ;

 - -холловская подгруппа группы ;

 - силовская -подгруппа группы ;

 - дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;

 - группа всех автоморфизмов группы ;

 -  является подгруппой группы ;

 -  является собственной подгруппой группы ;

 -  является максимальной подгруппой группы ;

нетривиальная подгруппа - неединичная собственная подгруппа;

 -  является нормальной подгруппой группы ;

 - подгруппа  характеристична в группе , т.е.  для любого автоморфизма ;

 - индекс подгруппы  в группе ;

;

 - централизатор подгруппы  в группе ;

 - нормализатор подгруппы  в группе ;

 - центр группы ;

 - циклическая группа порядка ;

 - ядро подгруппы  в группе , т.е. пересечение всех подгрупп, сопряжённых с  в .

Если  и  - подгруппы группы , то:

 - прямое произведение подгрупп  и ;

 - полупрямое произведение нормальной подгруппы  и подгруппы ;

 -  и  изоморфны.

Группа  называется:

примарной, если ;

бипримарной, если .

Скобки  применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

 - подгруппа, порожденная всеми , для которых выполняется .

, где .

Группу  называют:

-замкнутой, если силовская -подгруппа группы  нормальна в ;

-нильпотентной, если -холловская подгруппа группы  нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;

нильпотентной, если все ее силовские подгруппы нормальны;

метанильпотентной, если существует нормальная нильпотентная подгруппа  группы  такая, что  нильпотентна.

разрешимой, если существует номер  такой, что ;

сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе  группы  называется такая подгруппа  из , что .

Минимальная нормальная подгруппа группы  - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .

Цоколь группы  - произведение всех минимальных нормальных подгрупп группы .

 - цоколь группы .

Экспонента группы  - это наименьшее общее кратное порядков всех ее элементов.

Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп  называется:

субнормальным, если  для любого ;

нормальным, если  для любого ;

главным, если  является минимальной нормальной подгруппой в  для всех .

Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:

 - класс всех групп;

 - класс всех абелевых групп;

 - класс всех нильпотентных групп;

 - класс всех разрешимых групп;

 - класс всех -групп;

 - класс всех сверхразрешимых групп;

 - класс всех абелевых групп экспоненты, делящей .

Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть  - некоторый класс групп и  - группа, тогда:

 - -корадикал группы , т.е. пересечение всех тех нормальных подгрупп  из , для которых . Если  - формация, то  является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если  - формация всех сверхразрешимых групп, то  называется сверхразрешимым корадикалом группы .

Формация  называется насыщенной, если всегда из  следует, что и .

Класс групп  называется наследственным или замкнутым относительно подгрупп, если из того, что  следует, что и каждая подгруппа группы  также принадлежит .

Произведение формаций  и  состоит из всех групп

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: