Xreferat.com » Рефераты по металлургии » Термическая обработка и термомеханическая обработка обсадных труб из стали 36Г2С

Термическая обработка и термомеханическая обработка обсадных труб из стали 36Г2С

печи. Для получения мелкозернистой структуры время выдержки не должно превышать определённо величины.

Общая продолжительность нагрева в методических печах с наклонным подом для труб с толщиной стенки от 7 до 30 мм колеблется от 70 до 140 мин, время выдержки от 10 до 25 мин. Меньшее время соответствует трубам меньшими стенкой и диаметром.

Нормализация с охлаждением на воздухе обсадных труб из стали 36Г2С не обеспечивает требований ГОСТа на обсадные трубы марки Е.


Рисунок 3.- Микроструктура стали 36Г2С после нормализации.Ч400

Микроструктура металла таких труб (рис.3) состоит из крупных, строчечно-расположенных выделений феррита и сорбитообразного перлита. Такая структура свидетельствует о недостаточном охлаждении труб при нормализации. Пределы прочности и текучести имеют низкое значение. Более сильное охлаждение в производственных условиях струёй сжатого воздуха повышает предел прочности и относительное удлинение, однако предел текучести при этом находится на границе норм.

Макроструктура этой стали после охлаждения струёй сжатого воздуха (рис.4) имеет более мелкое зерно, направленность структурных составляющих отсутствует.


Рисунок 4.-Микроструктура стали 36Г2С после охлаждения струёй сжатого воздуха.Ч400

Возможно, что достаточно сильное охлаждение по всей длине труб при условии их вращения позволит наладить получение обсадных труб из стали 36Г2С марки Е. Об этом свидетельствует мелкозернистая микроструктура стали (рис.5), полученная при интенсивном охлаждении патрубков струёй воздуха. Соответствующие этой структуре механические свойства надёжно гарантируют получение обсадных труб марки Е.


Рисунок 5.- Микроструктура стали 36Г2С после интенсивного воздушного охлаждения с вращением трубы.Ч400

В таблице 3 приведены механические свойства обсадных труб после нормализации и отпуска при различных температурах.


Таблица 3

Механические свойства обсадных труб после нормализации и отпуска

Температура отпуска, єC

Механические свойства в продольном направлении

Предел прочности, Мн/мІ

(кг/ммІ)

Предел текучести, Мн/мІ

(кг/ммІ)

Относительное удлинение, %

Сужение площади поперечного сечения, %

Отношение предела текучести к пределу прочности, %

Ударная вязкость, Мдж/мІ

(кгм/смІ)

После нормализации

882,6(89,9) 601,1(61,3) 23,0 44,8 67,5 4,71(4,8)
500

878,6(89,6)

594,2(60,6) 24,0 48,8 67,5 5,69(5,8)
550 869,8(88,7) 581,4(59,3) 23,0 48,8 66,5 5,29(5,4)
600 824,6(84,1) 552,1(56,3) 22,0 48,0 67,0 5,98(6,1)
650 767,8(78,3) 513,8(52,4) 26,0 47,6 67,0 6,18(6,3)
680 739,3(75,4) 483,4(49,3) 27,0 52,2 65,5 6,67(6,3)

Микроструктура обсадных труб после нормализации состоит из смеси троостита с мелкопластинчатым перлитом и разорванной ферритной сетки. С повышением температуры отпуска в структуре стали появляется сфероидизированный цементит.

Нагрев поверхности трубы и прогрев её по сечению в современных печах скоростного нагрева протекает весьма интенсивно с высокой производительностью. Однако в таких печах весьма трудно, а подчас невозможно осуществить технологическую выдержку, необходимую для протекания диффузионных процессов и фазовых превращений в металле.

Поскольку скорость диффузионных процессов зависит не только от времени, но и от температуры, возникает возможность сократить во времени технологическую выдержку труб при нагреве повышением температуры.

По данным исследования Б.П.Колесника [6], механические свойства стали марки 36Г2С после нормализации с применением скоростного нагрева (1,8-8 град/сек) получаются такими же, а в некоторых случаях и более высокими, чем после нормализации с нагрева с технологической выдержкой. При нормализации с выдержкой наиболее высокие механические свойства у исследованных сталей получали при температуре 840-860єC, тогда как после скоростной нормализации оптимальная температура составила 900-960єC. Сталь 36Г2С после скоростной нормализации была наиболее прочной.

Нормализация труб из стали 36Г2С при температуре нагрева 850єC и выше с применением скоростного нагрева в секционных печах практически не изменяет предела текучести, уменьшает на 9,8-29,4 Мн/мІ (1,0-3,0 кг/ммІ) временно сопротивление, несколько увеличивает значения относительного удлинения и сужения, а также снимает внутреннее напряжение. Возможно, что более интенсивное охлаждение изменит указанные показатели.[2]


5.2.Закалка и отпуск труб


Наивысшие показатели прочностных и пластических характеристик труб можно получить путём закалки с последующим отпуском.

Применение закалки с отпуском позволяет улучшить свойства труб из углеродистой или низколегированной стали до уровня или даже несколько выше свойств нормализованных труб из стали, легированной марганцем, молибденом, ванадием и др.

Внедрение в промышленности закалки с отпуском вместо нормализации позволяет при производстве высокопрочных труб нефтяного сортамента сэкономить большое количество марганца, молибдена, вольфрама и других легирующих элементов при одновременном улучшении свойств труб.

В промышленности имеют место следующие основные технологические приёмы улучшения стали: методический нагрев в проходных печах – закалка в ваннах – отпуск в методических печах, скоростной нагрев в секционных печах – закалка в спреере – отпуск в секционных или роликовых печах. Встречается также нагрев под закалку и отпуск в индукционных нагревательных устройствах и другие сочетания указанных способов нагрева.

Методический нагрев, закалка в ваннах. Закалка труб в ваннах не получила большого применения и вряд ли следует ожидать развития этого способа закалки в будущем.

Прочностные и пластические показатели при закалке труб в ванне, впрочем как и при других способах закалки, в сильной степени зависят от температуры закалки и, особенно, от температуры отпуска. Температура закалочной среды также оказывает заметное, хотя и в меньшей степени, влияние на показатели механических свойств.

Исследования (по Ф.В.Вдовину) прочностных и пластических свойств обсадных труб из стали 36Г2С, закалённых в ванне, показали, что предел прочности и предел текучести в сильной степени зависят от температуры отпуска.

С увеличением температуры отпуска для всех режимов нагрева и температур закалочной среды пределы прочности и текучести заметно снижаются, но не настолько, чтобы при самых высоких температурах отпуска не удовлетворять требованиям, предъявляемым к трубам марки Е. Величина относительного удлинения при этом достигает наибольших значений при температуре отпуска 650єC.

При повышении температуры закалки предел прочности после отпуска понижается. Такая же картина наблюдается и по пределу текучести.

Наибольшие показатели относительного удлинения также зависят от температуры закалки и отпуска и, например, для стали 36Г2С могут быть получены при температуре закалки 850єС, отпуска 650єС.

С увеличением температуры закалочной среды предел текучести стали после отпуска понижается, тогда как предел прочности почти не изменяется. Относительное удлинение достигает максимальных значений при закалке в воде, подогретой до температуры 40-60єС.

Подбирая режим термической обработки, можно получить при определенных условиях наилучшие показатели механических свойств для стали данной марки. Так для стали 36Г2С такими условиями являются: температура закалки 850єС, отпуска 650єС, воды 40-60єС.


Рисунок 6.- Микроструктура стали после закалки и отпуска.Ч500


Структура закаленной и отпущенной стали в этом случае состоит из мелкодисперсного сорбита (рис.6) без свободных выделений феррита, что свидетельствует о переходе при нагреве за критическую точку Ас3, а следовательно, о полной закалке стали.

Высокие пластические и прочностные свойства, соответствующие требованиям марки Е, а по переделу текучести марки Л, обеспечивает полная термическая обработка труб, полученных с автоматического стана из катаной заготовки стали марки 36Г2С.

В данном случае нагрев труб под закалку осуществляли в методической проходной печи с наклонным подом, а отпуск – в камерной печи с выдержкой порядка 2ч.

Закалку производили в ванне с водой, подогретой до температуры 40-60єС.

Закалка в ванне труб (299х9мм) из сталей марок С, Д и К с температур 840-850єС с последующим отпуском при 640-650єС обеспечивает механические свойства более высокого класса, чем труб из этих же сталей, но термически не обработанных (табл.4).


Таблица 4

Механические свойства обсадных труб, закаленных в ванне

Марка стали

Химический состав, % Механические свойства

Обеспечивает категорию прочности

C Mn Si P S

Предел прочности, Мн/мІ

(кг/ммІ)

Предел текучести, Мн/мІ

(кг/ммІ)

Относительное удлинение, %

С 0,36 0,67 0,15 0,013 0,031

589,4-642,3

(60,1-65,5)

407,9-529,6

(41,6-53,9)

19,9-23,2

С

Д 0,45 0,90 0,29 0,014 0,031

693,3-725,7

(70,7-73,9)

568,8-581,4

(58,0-59,3)

17,0-22,1

К

К 0,37 1,68 0,58 0,024 0,034

745,3-769,8

(75,9-78,5)

652,1-669,7

(66,5-68,3)

17,4-20,5

Е

Микроструктура всех труб – сорбит различной степени дисперсности.

Скоростной нагрев, закалка в спреере. В настоящее время нет достоверных данных о влиянии на механические свойства металла скоростного нагрева под закалку при различных температурах.

При нагреве стали 36Г2С со скоростью 8 град/сек с увеличением температуры закалки от 870 до 1000єС прочность и пластичность стали повышаются: предел прочности с 961,0 (98) до 1098 Мн/мІ (112 кг/ммІ), предел текучести с 813,9 (82) до 1029,6 Мн/мІ (105 кг/ммІ), относительное удлинение с 14 до 16% и ударная вязкость с 7,84 (8) до 10,8 Мдж/мІ (11 кг·м/смІ).

Закалка от температуры 800-1000єС при обычном нагреве с выдержкой практически не изменяет предела прочности и предела текучести.

Ударная вязкость и относительное сужение достигают наиболее высоких значений после закалки от 840єС. Дальнейшее повышение температуры закалки ведет к понижению пластичности.

Скоростная термическая обработка позволяет получать механические свойства даже несколько более высокие, чем при обычной термической обработке, однако температура нагрева при скоростной закалке должна быть несколько более высокой.

Гладкие обсадные и другие трубы при скоростной закалке подвергают только наружному струйному охлаждению.

Из стали низколегированной марки 36Г2С путем скоростного нагрева в сочетании со струйным охлаждением можно получать трубы марок Л и М.

Трубы размером 73х9х7000мм из стали 36Г2С химического состава С=0,38%, Mn=0,54%, Si=1,52%, P=0,028%, S=0,023%, Cr=0,09%, Ni=0,10% нагревали под закалку в секционной печи со скоростью 4,6 –5,0 град/сек до температуры 860-870єС.

Охлаждение водой осуществляли в спреере соплового типа. Длина спреера и давление воды обеспечивали охлаждение труб до комнатной температуры за время прохождения их через спреер.

Скорость нагрева труб в секционных печах под отпуск 5,5-6,5 град/сек. Температура отпуска 660єС. Охлаждение после отпуска на воздухе.

Все обработанные указанным способом трубы удовлетворяли требованиям стандарта марки М (95%) и марки Л (5%) по всем характеристикам механических свойств, за исключением предела прочности.

У основной массы труб (75% из стали 36Г2С) предел текучести превышал 833,6 Мн/м2 (85 кг/мм2), а характеристики пластичности и ударной вязкости не только соответствовали требованиям стандарта для сталей Л и М, но в большинстве случаев значительно превышали их.

Относительное удлинение для 88% из стали 36Г2С было выше 16%, ударная вязкость для 90% труб выше 8,82 Мдж/м (9кг*м/см2).І

Типичной микроструктурой металла труб после термической обработки является сорбит отпуска. Вследствие недостаточного нагрева труб под закалку иногда наблюдалась структура сорбита с ферритной составляющей по границам аустенитных зерен.

Высокая температура горячей деформации труб приводила к крупнозернистой структуре металла труб (балл 2-3), представляющей собой перлит с ферритной сеткой по границам аустенитных зерен. Такая исходная структура затрудняет аустенизацию стали при скоростном нагреве под закалку. Для улучшения качества термообработанных труб целесообразно горячекатаные трубы перед закалкой подвергать нормализации.

Увеличение давления и расхода охлаждающей воды при одностороннем охлаждении не дает положительного эффекта.

Опытные данные показали, что двустороннее охлаждение в спреере обеспечивает сквозную прокаливаемость концов обсадных труб и дает возможность получать из стали 36Г2С обсадные трубы марки Л и М, а из стали Д трубы марки Е и К.

Уменьшение механических свойств высаженных концов термически обработанных труб объясняется не только изгибом волокон, что имеет место и в трубах просто нормализованных, но также и возможной неполной прокаливаемостью стенок. Однако, как показали исследования, в условиях достаточного нагрева и охлаждения при скоростной термической обработке можно получить трубы, у которых механические свойства тела трубы и высаженных концов будут равномерными и достаточно высокими. Этому в значительной мере способствует нормализация обсадных труб перед окончательной термической обработкой, которая измельчает зерно стали, выросшее в процессе высадки. Более дисперсная структура металла, как известно, ускоряет его аустенизацию при нагреве, что особенно важно при скоростной термической обработке.

Предварительная нормализация повышает прочностные характеристики высаженных концов примерно на 10%, а характеристики пластичности – на 40-60%.

Нагрев токами высокой частоты, закалка в спреере. Установка для закалки состоит из индуктора для нагрева движущейся трубы под закалку. Нагретый участок трубы охлаждается в спреере вращающимся потоком воды, установленным непосредственно за индуктором. Отпуск закаленного участка трубы производится также путем нагрева токами высокой частоты во втором индукторе, находящемся за спреером. Труба при термообработке движется горизонтально со скоростью примерно 1 м/мин.

Для уменьшения осевого искривления труб последние приваривают друг к другу в непрерывную полосу.

Такой термической обработке подвергали обсадные трубы диаметром 168 и 141 мм с толщиной стенки 8-14 мм из стали марки 36Г2С. Скоростной нагрев проводили на частоте 2500 гц.

Температура нагрева под закалку составляла 850-950єС, температура отпуска 500-725єС в зависимости от марки стали и толщины стенки трубы.

После термической обработки значительно повышаются не только запас прочности труб, но их пластические свойства. Недостатком такой установки является низкая ее производительность.[2]


5.3.Термическая обработка концов труб

Недостатком муфтовых резьбовых соединений обсадных труб является ослабленное тело трубы в нарезке.

Одним из способов достижения равнопрочности является упрочнение концов самой трубы при помощи термической их обработки.

Технологию упрочнения концов труб ведут путем нагрева всей трубы с последующей закалкой концов в спреерной установке. В этом случае концы труб подвергают закалке, а всю остальную часть трубы – нормализации.

По другой технологии нагревают только концы труб с последующей их закалкой.

При нагреве под закалку только концов труб наблюдаются две переходные зоны: зона перехода от закалочного участка к нормализованному (температура выше Ас3) и зона с градиентом температур критического интервала и высокого отпуска. Вторая переходная зона характеризуется снижением прочностных свойств примерно на 5-12%, по отношению к исходным при одновременном повышении относительного удлинения и относительного сужения.[2]


6.Термомеханическая обработка обсадных труб

В последнее время получают развитие новые технологические процессы комбинированного термомеханического воздействия на структуру и свойства обсадных труб, позволяющие значительно улучшить их эксплуатационные характеристики и обеспечить существенную экономию металла в народном хозяйстве.

На линии для комбинированного высокотемпературного термомеханического упрочнения обсадных труб горячекатаные трубы-заготовки после прокатки на автоматстане поступают на входную сторону раскатных станов и прокатываются здесь до необходимого по технологии размера. Существующие раскатные станы в соответствии с результатами проведенных ранее исследований заменяются более мощными двухвалковыми с осевой выдачей раската для осуществления прокатки с обжатиями по толщине стенки до 20%(вместо 3-5%на существующих станах).

После раскатки трубы подвергают закалке в спрейерных охлаждающих устройствах, совмещенных с оборудованием выходной стороны раскатных станов. Трубы, имеющие температуру на выходе в раскатные станы, более низкую, чем задано по технологии ВТМО, после охлаждения автоматически исключаются от потока высокопрочных труб и сбрасываются в карман. Закаленные трубы с выходной стороны станов поступают на центральный рольганг и перекладывателем через устройство для слива воды направляются на выходной рольганг отпускной печи с шагающими балками (с поперечным перемещением труб). Эта печь (с газовым обогревом) имеет две технологические зоны: нагрева и выдержки. Топливо сжигают в специальных, вынесенных из рабочего пространства надсводовых топках с рециркуляцией разбавленных продуктов сгорания в рабочем пространстве печи. Конструкция шагающих балок предусматривает перекатывание труб не только на рабочем, но и на холостом ходу балок, что обеспечивает равномерный нагрев труб по периметру. Шагающие балки стационарные и не охлаждаются.

Далее нагретые до заданной температуры отпуска трубы поступают на рольганг выдачи, а затем в калибровочный стан. Клети этого стана нерегулируемые, с индивидуальным приводом. Стан предназначен для тёплой и горячей калибровки труб.

После калибровки трубы с температурой, близкой к температуре отпуска, подвергают тёплой правке на правильном стане и охлаждают на колёсном холодильнике. При охлаждении благодаря быстрому вращению труб искривление их по длине почти отсутствует. Поэтому для высокопрочных труб холодную правку, как обязательную технологическую операцию можно не предусматривать. В конце холодильника есть обводной рольганг перед станами холодной правки, по которому высокопрочные трубы направляются непосредственно для отделки. В таблице приведены показатели механических свойств металла труб после ВТМО.

Таблица 5

Механические свойства металла труб после ВТМО

Группа прочности по ГОСТ632-64

Температура тепловой деформации,єС

Временное сопротивление, кг/ммІ

Предел текучести, кг/ммІ

Относительное удлинение, %

Относительное сужение, %

Сталь 10
Л 600 81,0 74,1 17,5 72,0
Сталь 36Г2С
М 600 100,0 84,0 20,0 62,5

Внедрение новой технологии позволит улучшить качество труб, применить для их изготовления исходную заготовку из более дешёвого металла и снизить эксплуатационные затраты.[7]


7. Контроль качества труб после термической

и термомеханической обработки

С целью обеспечения высоких эксплуатационных свойств труб нефтяного сортамента при их изготовлении осуществляется тщательный пооперационный контроль геометрических размеров, механических свойств и состояния внутренней и наружной поверхностей.

Заключительной операцией технологического контроля обсадных труб является испытание внутренним гидравлическим давлением. Цель гидравлического испытания – проверка прочности тела трубы и герметичности резьбового соединения.

Применение закалки и отпуска в некоторых случаях вызывает появление дополнительных дефектов, обусловленных термической обработкой (закалочные трещины и др.). Поэтому в технологии производства высокопрочных труб особую важность, кроме гидравлических испытаний, приобретает контроль качества поверхностей трубы и особенно резьбовых концов. Наружные и внутренние дефекты значительно снижают сопротивление трубы действующим нагрузкам и могут служить причиной аварий.

Наиболее распространёнными видами контроля труб на отечественных и зарубежных заводах являются визуальный осмотр, а также контроль с помощью магнитного, ультразвукового методов и гамма-дефектоскопии.[2]


Литература:


[1]- Ю.А.Башнин, Б.К.Ушаков, А.Г.Секей, Технология термической обработки, М., Металлургия, 1986.

[2]- А.А.Шевченко, В.И.Стрижак, Производство труб для нефтяной промышленности, М., Металлургия, 1965.

[3]- А.А.Гайворонский, Крепление нефтяных и газовых скважин в США, Гостоптехиздат, 1962.

[4]- Ю.М.Матвеев, производство высокопрочных обсадных труб, Сталь, 1953, №10.

[5]-Металловедение и термическая обработка стали. Справочник. т.III, М.: Металлургия, 1983.

[6]-Б.П.Колесник, Механические свойства углеродистой и низколегированной трубной стали после нормализации с применением скоростного нагрева, Производство труб, сб. статей УкрНИТИ, вып. 9, Металлургиздат, 1963.

[7]-В.М.Янковский и др., Чёрная металлургия, Бюл. Научн.-техн. журн., 1976, №10, ст.41.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: