Xreferat.com » Рефераты по радиоэлектронике » Радиолокационный приемник сантиметрового диапазона

А сколько
стоит написать твою работу?

цену

Вместе с оценкой стоимости вы получите бесплатно
БОНУС: спец доступ к платной базе работ!

и получить бонус

Спасибо, вам отправлено письмо. Проверьте почту.

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.

В таком случае, пожалуйста, повторите заявку.

Радиолокационный приемник сантиметрового диапазона

Содержание

Введение 2

2.Выбор и обоснование функциональной схемы РЛС 3

2.1.Амплитудная моноимпульсная система 4

2.2. Определение параметров сигнала 6

3.Выбор и обоснование структурной схемы приёмника 11

Структурная схема моноимпульсной РЛС сопровождения 13

4. Расчёт и определение параметров структурной схемы РПРУ 14

4.1. Определение эквивалентных параметров антенны 14

4.2. Расчет полосы пропускания линейного тракта РПрУ 14

4.3. Определение структуры радиотракта 16

4.4. Выбор гетеродина 17

4.5. Обеспечение необходимого усиления трактом ВЧ 17

4.6. Расчет селективности 18

4.7. Распределение искажений 19

4.8. Структурная схема РПрУ 20

4.9. Выбор элементной базы. Задания на разработку каскадов. 23

5.Расчет элементов принципиальной схемы приемника 27

5.1. Антенный переключатель 27

5.2.  Разрядники защиты приемника 29

5.3. Входная цепь 30

5.4. Преобразователь частоты (смеситель) 32

5.5. Усилитель промежуточной частоты (УПЧ) 35

Расчет УПЧ на ЭВМ 37

5.6. Расчёт детектора 38

5.7. Проверочный расчёт 41

Принципиальная схема приемника 41

Спецификация элементов 42

6.Технико-экономическое обоснование 44

6.1. ТЭО выбора элементной базы 44

6.2. Расчет технико-экономических показателей блока ПЧ 44

7.Охрана труда при работе с радиолокационной станцией 51

7.1. Биологическое действие СВЧ - излучения на организм человека 52

7.2. Защита обслуживающего персонала от СВЧ излучений 55

Список литературы : 58


Введение

Радиолокационный приёмник ( РЛП ) является составной частью радиолокационных станций (РЛС), предназначенных для обнаружения, определения координат и параметров движения удаленных объектов (радиолокационных целей). Для извлечения информации используется зондирование пространства радиосигналами, с последующим приемом отражённой от целей электромагнитной энергии, причем информация о целях может содержаться в изменении во времени амплитуды (или отношении амплитуд) и частоты (или спектра) сигналов. Такой способ носит название активной радиолокации с пассивным ответом. Передатчик и приёмник в таких системах, как правило, работают на общую антенну.

В рамках данного проекта рассматривается приемное устройство одноцелевой РЛС сопровождения, осуществляющей непрерывное слежение за перемещением цели. Такая РЛС представляет собой наземную систему, у которой антенна с иглообразным лучом смонтирована на поворотном устройстве со следящим приводом, которое, изменяя положение антенны по азимуту и углу места, позволяет следить за целью. Путем измерения угла прихода фронта волны эхо-сигнала и корректирования положения антенны таким образом, чтобы цель удерживалась в центре луча, определяется ошибка ориентирования антенны.

РЛС сопровождения применяются в основном для управления оружием, а также для полигонных измерений траекторий полетов ракет. Производится измерение азимута, угла места и дальности цели (а в ряде случаев и доплеровского сдвига частоты), по скорости изменения этих параметров вычисляется вектор скорости цели и производится прогнозирование ее положения. По этой информации осуществляется, например, наведение зенитных орудий и устанавливается момент разрыва снарядов. Аналогичные функции РЛС сопровождения выполняются для выработки данных по наведению и команд управления зенитными ракетами.

Различают РЛС импульсного и непрерывного излучения. В РЛС с непрерывным излучением используются немодулированные и ЧМ колебания. Однако наибольшее применение нашли импульсные приемопередающие радиолокационные станции, излучающие в направлении цели короткие зондирующие СВЧ-радиоимпульсы с фиксированным периодом следования, длительностью импульсов, амплитудой и несущей частотой (рис.1.1,а), что обеспечивает высокую разрешающую способность и точность при измерении дальности. Радиоприемные устройства (РПрУ) таких станций служат для приема части энергии излучаемых радиоимпульсов, отраженной от цели. Отраженные импульсы (рис.1.1,б) поступают на вход приемника с временным сдвигом DtD = 2R/c, где R – расстояние до объекта. Измеряя DtD, можно судить о расстоянии до цели, а узкая диаграмма направленности антенны позволяет определить направление на объект.

Рис. 1.1 Огибающие радиоимпульсов:

а) излучаемых антенной; б) отраженных от цели


2.Выбор и обоснование функциональной схемы РЛС

В следящих системах РЛС сопровождения наиболее широко используют методы сравнения сигналов по амплитуде или фазе ВЧ колебаний, принятых на два (и более) разнесённых в пространстве луча антенны при одновременном сравнении сигналов, либо однолучевую сканирующую антенну при последовательном сравнении сигналов. Первый способ применяется в моноимпульсных следящих измерителях, второй - в амплитудном методе сравнения при коническом сканировании луча .

Чувствительность методов сканирования и переключения луча к флуктуациям амплитуды эхо-сигналов явилась основной причиной разработки РЛС сопровождения, обеспечивающей одновременное наличие всех лучей, необходимых для выявления угловой ошибки. Выходные сигналы всех лучей, соответствующие одному зондирующему импульсу, могут быть одновременно сравнены, благодаря чему исключается влияние изменения амплитуды эхо-сигнала во времени. Такой метод называется моноимпульсным (полная информация об угловых ошибках извлекается из одного импульса).

Моноимпульсной аппаратуре присуща высокая точность угловых измерений, т.к. система облучателей жестко смонтирована и не имеет движущихся деталей.

2.1.Амплитудная моноимпульсная система

Эхо сигнал фокусируется в виде “пятна”, поперечное сечение которого в случае антенны с круговой апертурой имеет вид J1(x)/x ( J1(x) функция Бесселя 1го порядка). Пятно находится в фокальной плоскости, если цель расположена на оси антенны, и смещается относительно центра, когда цель отходит от оси. Облучатель антенны расположен в фокальной точке, так что принимаемая энергия максимальна в том случае, когда цель находится на оси.

Облучатель сконструирован таким образом, что он реагирует на любое боковое смещение пятна относительно фокальной плоскости. При использовании облучателя в виде квадрата, образованного четырьмя рупорами, полная симметрия обеспечивается когда пятно находится точно в центре (на каждый из четырех рупоров попадает одинаковое количество энергии. При отклонении цели от оси антенны и , следовательно, смещении пятна относительно центра, равенство энергий, принимаемых рупорами нарушается. РЛС регистрирует отклонение цели от оси антенны, сравнивая амплитуды эхо-сигналов, появляющихся в каждом из рупоров. Это осуществляется с помощью СВЧ мостовых соединений, формирующих разности сигналов каждой пары двойных рупоров. Для выявления ошибки по азимуту, производится вычитание выходного сигнала левой пары рупоров из выходного сигнала правой пары. Сигнал верхней пары вычитается из выходного сигнала нижней пары.

Сигналы, полученные в результате вычитания (разности), равные нулю для цели, находящийся на оси антенны, и возрастающими по амплитуде по мере удаления цели от оси антенны. Фаза разностных сигналов меняется на 1800 при переходе цели через ось с одной стороны на другую. Суммарный сигнал всех четырех рупоров используется в качестве опорного сигнала схемы детектора угловой ошибки, который позволяет использовать изменения фазы разностного сигнала для определения направления отклонения цели от оси антенны. Суммарный сигнал используется также в схеме сопровождения по дальности и для установления опорного уровня в схеме АРУ.

Суммарный сигнал, а также угломестный и азимутальный разностные сигналы преобразуются в сигналы ПЧ с помощью одного общего гетеродина для сохранения относительного соотношения фаз сигналов по ПЧ. Выходной суммарный сигнал ПЧ детектируется и используется в качестве входного видеосигнала схемы сопровождения по дальности. В схеме сопровождения по дальности определяется время прихода очередного эхо-сигнала от сопровождаемой цели и вырабатываются стробирующие импульсы, отпирающие соответствующие цепи приемника только на те короткие интервалы времени, когда ожидается эхо-сигнал выбранной цели. Стробированый видеосигнал используется также для формирования напряжения постоянного тока для схемы АРУ всех трех усилительных каналов ПЧ, в которых АРУ поддерживает постоянство угловой чувствительности (крутизны сигнала ошибки) схемы сопровождения по углам, даже если эхо-сигнал цели изменяется в широком динамическом диапазоне. Для получения устойчивого автоматического сопровождения по углам необходимо поддерживать с помощью АРУ постоянство усиления следящей системы схемы сопровождения.

Суммарный сигнал ПЧ используется также, как опорный сигнал в ФД, вырабатывающих из разностных сигналов напряжения сигналов ошибки сопровождения по углам. ФД выполняет скалярное умножение; выходное напряжение ФД:

e = кS ккD кcos(q) , где кS к- модуль суммарного сигнала; кD к - модуль разностного сигнала; q - фазовый угол между ними. В правильно отрегулированной РЛС q принимает только два значения: 0 или 1800, так что единственным назначением фазочувствительной характеристики детектора ошибки является обеспечение положительной или отрицательной полярности сигнала при 0 и 1800 соответственно, что придает выходному сигналу детектора угловой ошибки признак направления отклонения от оси антенны.

В импульсной РЛС сопровождения выходным сигналом детектора угловой ошибки является биполярный видеосигнал, амплитуда которого пропорциональна угловой ошибке, а полярность соответствует знаку ошибки. Этот видеоимпульс обычно подается на конденсатор, который заряжается до пикового значения видеоимпульса и сохраняет это напряжение до следующего видеоимпульса. В этот момент конденсатор разряжается и вновь заряжается до уровня, соответствующего новому импульсу. Этот импульс подается на ФНЧ, выходное напряжение постоянного тока которого, являющееся напряжением сигнала ошибки, подается на усилители следящей системы для корректирования положения антенны.

2.2. Определение параметров сигнала

Выберем в качестве зондирующего сигнала простой сигнал с базой равной 1 (радиоимпульсы с прямоугольной огибающей, рис.2.2.1). Выбор является предварительным. После расчета импульсной мощности передатчика Pи, если она превысит допустимое для наземных РЛС значение 1 МВт/имп, зададимся приемлемой импульсной мощностью и возьмем в качестве зондирующего сигнала сложный сигнал.


Рис. 2.2.1 Временная и спектральная диаграммы радиоимпульсов, отраженных от цели и поступающих на вход РПрУ


Рис. 2.2.2 Временная и спектральная диаграммы сигнала на выходе линейной части РПрУ


Рис. 2.2.3 Временная и спектральная диаграммы видеоимпульсов на выходе детектора РПрУ


Данные к расчёту:

Дальность: R=150 км;

Разрешение по дальности: DR=150 м;

Суммарная ошибка: s=10 м;

ЭПР цели: sц=2 м2;

Скорость цели: Vц=400 м/с;

Длина волны: l=0,23 м.


Расчёт параметров сигнала:


Выбор частоты следования и длительности импульсов производится из условия однозначного измерения параметров целей на максимальной дальности:

Период повторения импульса:

Частота следования импульсов: Длительность импульса:


В схеме сопровождения по дальности рассматриваемой РЛС определяется временной сдвиг очередного эхо-сигнала сопровождаемой цели по отношению к следящим импульсам, временное положение которых соответствует оценке задержки сигнала цели. Поэтому время установления переднего фронта видеоимпульса (рис.2.2.3) должно лежать в пределах: . По этому параметру определяется полоса пропускания линейной части РПрУ, что будет сделано в дальнейшем. Примем у=0,2 мкс.

В РЛС сопровождения, измеряющих дальность и два угла, используют игольчатый луч. Ширина луча антенны одинакова во всех плоскостях и определяется разрешением по углу: q0,5=Da=Db.

Т.к. измеритель угловых координат выходит за рамки данного проекта, и в техническом задании отсутствуют значения Da и Db, то q0,5 принимаем равным 1,5о.

Основной характеристикой качества работы радиолокационной станции, исходя из её целевого назначения, является точность слежения. Показателями точности являются ошибки работы системы. Различают динамическую и флюктуационную ошибку. Динамической ошибкой sд является ошибка по задающему воздействию, а флюктуационная sф в данном случае связана с собственным шумом приемника.

Оптимизация системы по точности заключается в выборе оптимального коэффициента усиления разомкнутой системы КУопт, при котором имеем минимум среднеквадратической ошибки . Как видно из графика (рис.2) зависимости sд и sф от КУ, в оптимальном режиме sф=sд, откуда








Отношение сигнал/шум связано с флюктуационной ошибкой соотношением:

, где полоса DFэ =(5..10)/2p »2

Необходимо учитывать потери в отношении сигнал/шум, возникающие из-за следующих причин:

  • потери при распространении радиоволн 1 = 1...3 дБ

  • потери в антенно-фидерном тракте 2 = 1 дБ

  • потери при амплитудном детектировании 3 = 1...5 дБ

  • потери на квантование 4 = 2 дБ ( при двухуровневом квантовании )

    Суммарный коэффициент потерь: = Si = 5...10 дБ.

    Примем = 10 [дБ] = 3,16 [раз]

    Отношение сигнал/шум с учетом потерь:

    сш)`= (Рсш)Ч = 0,45Ч3,16 » 1,42


Определение параметров антенны:

Коэффициент направленного действия (КНД):


Примем коэффициент полезного действия (КПД) антенны равным: h=0,95.

Коэффициент усиления :


Расчет требуемой мощности передатчика РЛС производим на основе уравнения дальности радиолокации, без учета влияния Земли (высота объектов достаточна):

где sц - эффективная площадь рассеяния цели

h - КПД антенны ( h » 0,95 )

k = 1,38x10-23 Дж/К - постоянная Больцмана

Т0 = 290 К - температура воздуха по Кельвину

Ш = 3,5 - коэффициент шума приемника

b0 = 0,002...0,004 дБ/км - величина затухания волн в атмосфере.

Примем b0 = 0,002 дБ/км.

R = Rmax Ч e-0,115b0Rmax = 150 Ч e-0,115x0,002x150 »145 км

R = Rmax -R = 150-145 =5 км


Полоса приемника: Fпр = 1/tи = 1 / 1Ч10-6 = 1 МГц

Полоса шума приемника: Fш= 1,1Fп =1,1Ч106= 1,1 Мгц


Импульсная мощность передатчика:



Ри <1 МВт, следовательно можно использовать простой сигнал.


3.Выбор и обоснование структурной схемы приёмника


Структурные схемы РПрУ различаются прежде всего ТВЧ ( тракт высокой частоты ). Существует несколько различных типов схем.

1.) Детекторный тип

2.) Прямого усиления

3.) Супергетеродинного типа

Приёмник прямого детектирования характерен отсутствием усиления колебаний радиочастоты до детектора. Его отличает низкая чувствитель­ность и избирательность.

Приёмник прямого усиления содержит УРЧ. ВЦ и УРЧ настроены на частоту принимаемого сигнала, на которой и осуществляется усиление. Т.к. используется многокаскадный УРЧ, то это обуславливает снижение его устойчивости и общей избирательности приёмника, затрудняет техни­ческую реализацию перестройки по частоте.

Трудности. связанные с многокаскадностью УРЧ, позволяет устранить, в принципе, использование регенеративных и сверхрегенеративных усилите­лей, обеспечивающих большее усиление на каскад. Однако такие усилители обладают повышенными искажениями, относительно низкой устойчивостью по отношению к дестабилизирующим факторам, повышенной вероятностью пара­зитного излучения. По этой причине они применяются редко, и находят применение, в частности, в портативных приёмниках СВЧ. При любых типах используемых УРЧ пол­ностью преодолеть присущие схеме прямого усиления недостатки не удаёт­ся, поэтому в настоящее время такие РПрУ с фиксированной настройкой применяются практически лишь в микроволновом и оптическом диапазонах, что не соответствует характеристикам проектируемого РПрУ, т.к. он рассчитан на работу в сантиметровом диапазоне.

Существенное улучшение всех показателей РПрУ достигается на основе принципа преобразования частоты принимаемого сигнала - переноса его в частотную область, где он может быть обработан с наибольшей эффективностью. Самое широкое распространение во всех радиодиапазонах получила построенная на этом принципе схема супергетеродинного приемника. Эта схема в настоящее время наиболее совершенна.

Приемники супергетеродинного типа позволяют успешно решать задачи получения требуемой фильтрации принимаемого сигнала, обеспечение заданного усиления, решение проблемы селективности, простоты перестройки, которая обеспечивается с помощью простых колебательных систем преселектора.

Относительная широкополосность приемников импульсных сигналов позволяет, как правило, строить такие приемники с однократным преобразованием частоты.

Из выше сказанного можно сделать вывод, что построение проектируемого РПрУ целесообразно выполнять по супергетеродинной схеме, наилучшим образом удовлетворяющей заданным техническим требованиям.

Амплитуда сигналов, поступающих на вход радиолокационного РПрУ, изменяется в широких пределах, т.к. мощность отраженных от цели сигналов обратно пропорциональна четвертой степени расстояния до цели (которое может меняться) и, кроме того, зависит от типа цели и её эффективной поверхности рассеивания. Работа РЛС в реальных условиях сопровождается действием разного рода активных и пассивных нестационарных помех естественного и искусственного происхождения, уровень мощности которых зачастую значительно (на 20..60 дБ) превышает уровень полезного сигнала, а параметры априорно неизвестны. Воздействие помех еще больше расширяет диапазон изменения сигналов, поступающих в антенну РЛС.

Пределы изменения амплитуд напряжения сигнала от UСмин до UСмакс характеризуются динамическим диапазоном сигналов DС = UСмин/UСмакс, который может быть выражен в децибеллах: DС [дБ] = 20lg(UСмин/UСмакс). Для радиолокационных сигналов DС 50...120) дБ [9], однако для РЛС конкретного назначения обычно принимают DС (50..90) дБ, т.к. известны типы целей и пределы изменения дальности.


Структурная схема моноимпульсной РЛС сопровождения

4. Расчёт и определение параметров структурной схемы РПРУ


4.1. Определение эквивалентных параметров антенны


Проектируемый радиолокационный приемник имеет настроенную антенну, т.е. её сопротивление чисто активно и равно сопротивлению фидера:

ZА = RА = Rф = 75 Ом

Относительная шумовая температура антенны:


ta=TA/T0,

где T0 - стандартная температура приёмника Т0=290 0 К ;

ТА - абсолютная шумовая температура антенны.

По графику зависимости шумовой температуры идеальных приемных антенн от частоты (рис 1.4 [ 3 ]) находим: ТА =140 0 К.


ta=140 / 290=0,48


4.2. Расчет полосы пропускания линейного тракта РПрУ

Для импульсных сигналов полоса пропускания приемника выбирается исходя из получения максимального отношения сигнал/шум на выходе радиотракта. Такая полоса называется оптимальной и определяется как:

Пс= (0,8..1,4)/tуст 1/0,2 мкс=5 МГц


Ширина полосы пропускания линейного тракта П складывается из ширины спектра принимаемого сигнала Пс, доплеровского смещения частоты сигнала fд и запаса полосы, требуемого для учета нестабильностей и неточностей настроек приемника Пнс:

П=Пс+2fднс


Доплеровское смещение:

fд = 2fсVц/с = 2Ч1,3Ч109Ч400/3Ч108=3,5кГц,

где Vц- скорость цели относительно антенны РЛС;

с - скорость света в вакууме.


Запас полосы для учёта нестабильностей:


,

где бс - относительная нестабильность несущей частоты принимаемого сигнала; при использовании в передатчике кварцевой стабилизации частоты несущей можно получить бс =(10-5...10-6)

бг- относительная нестабильность частоты гетеродина, которую на данном этапе можно оценить лишь приблизительно, используя данные таблицы 2.1 [3]. Выбрав транзисторный однокаскадный гетеродин с кварцевой стабилизацией , можно получить бг=10-6;

бпр - относительная погрешность и нестабильность настройки контуров тракта промежуточной частоты, принимаем бпр=(0,0003...0,003);

бн - относительная нестабильность частоты, вызванная неточностью настройки контуров гетеродина, бн = (0,001...0,01);


Промежуточная частота выбирается из условия:

fпр>(10...20)/tи =15/1Ч10-6=15 МГц.

В РЛП миллиметрового и сантиметрового диапазонов промежуточная частота равна либо 30, либо 60 МГц [5]. Выберем промежуточную частоту из стандартного ряда:

fпр=30 МГц.


Частота гетеродина: fг=fc-fпр=1,3-0,03=1,27 ГГц .


=

= 13 МГц


Пнс>(1,2...1,5)ЧПс, следовательно придётся использовать частотную автоматическую подстройку частоты ( ЧАПЧ ) или фазовую автоподстройку частоты (ФАПЧ).

При использовании ЧАПЧс Кчапч=10 полоса пропускания приемника:


ПЧАПЧс+(2fднс)/Кчапч=5Ч103+(7+13Ч103)/10  МГц .


При использовании ФАПЧс Кфапч  полоса пропускания приемника:


ПФАПЧс+(2fднс)/Кчапч=5Ч103+(7+13Ч103)/~  МГц .

ПФАПЧ не намного уже, чем ПЧАПЧ, поэтому для упрощения схемы будем использовать ЧАПЧ.


Расчет предельно допустимого коэффициента шума:

где:

  • Кр.ф. 0,8 - коэффициент передачи фидера по мощности.

  • Пш = 1,1ЧП = 1,1Ч6,3=6,93 МГц.

  • К - постоянная Больцмана К=1,38Ч10-23 Дж/К.


    Шдоп (1Ч10-12/(1,38Ч10-23Ч290Ч6,93Ч106Ч1,4)-0,48+1)Ч0,8=

    = (25,75-0,48+1) Ч0,8 = 21,02


4.3. Определение структуры радиотракта

Оценим коэффициент шума линейного тракта РПрУ, после чего решим вопрос о включении или невключении УРЧ в состав радиотракта.

Коэффициент шума радиотракта без использования усилителя радиочастоты ( УРЧ ) :


Ш=(Швц+(Шпч-1)/Квц+(Шупч-1)/(КвцЧКпч))/Кр.ф.


Все коэффициенты шума ориентировочно берём из таблицы 6.1 [3]:


Швц=1,3 Квц=0,8

Шурч=1,5 Курч=10

Шпч=5 Кпч=8 (при использовании транзисторного ПЧ)

Шупч=10


Ш=( 1,3+(5-1)/0,8+(10-1)/(8Ч0,8))/0,8=9,5 < Шдоп=21,02

 можно обойтись без УРЧ.

4.4. Выбор гетеродина

Исходные данные для выбора гетеродина:

  • Рабочая частота fг=fc-fпр=1,3-0,03=1,27 ГГц;

  • Требуемая выходная мощность РГвых;

  • Диапазон перестройки по частоте;

  • Шумовые характеристики.

Целесообразно использовать полупроводниковый гетеродин на диоде Ганна (ГДГ). Выходная мощность гетеродина должна быть достаточна для нормальной работы смесителей и схем ЧАПЧ всех трех каналов приема РЛС:

РГвых = (Рс + Рапч )Ч3 = (6+9)Ч3 =45 мВт;

Из таблицы 8.4 [3] выбираем ГДГ типа VSC-9019, имеющий следующие параметры:

  • диапазон рабочих частот fГ,ГГц.......................................1..2;

  • шаг перестройки: электронной fэл,МГц...........................50;

    механической fмех,МГц....................200;

  • выходная мощность РГвых , мВт........................................100;

  • напряжение питания Uпит,В.................................................11;

  • ток потребления I,А............................................................0,5;


4.5. Обеспечение необходимого усиления трактом ВЧ

Обеспечение достаточного усиления радиосигнала трактом ВЧ необходимо для нормальной работы детектора, а так же получения низкого уровня шума. Основное усиление обеспечивается в тракте ПЧ. Основными требованиями к усилительным каскадам линейного тракта являются их достаточная устойчивость (возможно меньшее число каскадов) и построение на основе наиболее экономичной и современной электронной базы.

Коэффициент усиления линейного тракта:

,

где RА - активное сопротивление антенны;

Uпр - амплитуда сигнала на выходе УПЧ;

Требуемая амплитуда сигнала на выходе УПЧ определяется амплитудой напряжения, необходимой для нормальной работы детектора: Uвых=1В.

Рассчет коэффициента усиления линейного тракта:



Коэффициент передачи по мощности согласно таблицы 6.1 [3] для транзисторного преобразователя частоты примем равным:

КРпч = 8

Амплитуда напряжения на входе УПЧ :


Uвх= 4РвхЧRвх = 2ЧРаЧКвцЧКпчЧRвх = 2Ч10-12Ч0,8Ч8Ч103 = 0,13 мВ.


Коэффициент усиления УПЧ по напряжению:

Купч=Uвых/Uвх=1/(1,3Ч10-4)=7,6Ч103

4.6. Расчет селективности


Селективность по зеркальному каналу обеспечивается с помощью частотно - избирательной входной цепи, а по соседнему каналу - используя два одиночных контура: на выходе преобразователя частоты и на выходе УПЧ.


Селективность по зеркальному каналу:

Принимаем dэс=0,006


= 23,8 дБ,


Эквивалентное затухание одиночных контуров:


dэп= П/(2Чfпр)=6,3/(2Ч30)=0,15


Селективность по соседнему каналу:

Полагаем: fск= П=6,3 МГц;

n=2,

тогда:

= 18,9 дБ

4.7. Распределение искажений

При рассмотрении такой характеристики РПрУ, как допустимый уровень частотных и временных искажений сигнала, остановимся на наиболее существенном для приемников импульсных сигналов показателе - искажениях переднего фронта импульса. Распределение искажений этого вида по каскадам РПрУ можно выразить в величине времени установления переднего фронта импульса и записать следующим образом:

= 0,2 мкс


Искажения, вносимые входной цепью незначительны и составляют:

0,0064 мкс

УРЧ является инерционным звеном, поэтому искажения, вносимые им, довольно велики: 0,024мкс

Искажения, вносимые преобразователем частоты,