Xreferat.com » Рефераты по схемотехнике » Отчет по практике

Отчет по практике

или .

На практике выполняется ограничение, когда не зависит от времени на достаточно большом интервале времени и равна . Тогда

. (3.4)

Это соотношение устанавливает связь вероятности безотказной работы изделия с интенсивностью отказов данного изделия .

Используя соотношение (3.1) и (3.4), получим

.

Определим плотность вероятности отказов изделия

, (3.5)

которая подчиняется экспоненциальному закону распределения. Для любого закона распределения отказов справедливы соотношения

, .

В качестве показателя надежности ЭА используют только среднее время безотказной работы (математическое ожидание случайной величины )

.

Для экспоненциального закона распределения отказов (3.5)

. (3.6)

При экспериментальной оценку среднее время безотказной работы изделия определяется следующим образом

, где

– время исправной работы i-го изделия,

– число изделий в партии, над которой производится испытание.

Используя соотношение (3.6) для вероятности безотказной работы (3.4) получим

.

Положим . Тогда , т.е. на интервале времени отказали 63% изделий и сохранили безотказность 37%.

Дисперсия времени безотказной работы определяется из выражения

и при экспоненциальном законе распределения отказов равна

.

Отсюда среднеквадратическое отклонение времени безотказной работы изделия будет

.

Интенсивность отказов любого изделия определяется выражением (3.3). Для небольших интервалов времени справедливы приближения , , , поэтому из (3.3) имеем

.

Эта оценка интенсивности отказов может быть использована при опытном определении интенсивности отказов. Физически интенсивность отказов изделий определяет относительное число отказавших изделий в единицу времени. Единицей измерения интенсивности отказов обычно является величина .

Интенсивность отказов изделия на большом интервале времени описывается качественной кривой (рис.4). Она характеризуется тремя явно выраженными периодами: приработки I, нормальной эксплуатации II и износа III.

На участке приработки наблюдаются внезапные приработочные отказы. Они возникают вследствие того, что часть элементов, входящих в состав изделия, являются либо бракованными, либо имеют низкий уровень надежности. Период приработки составляет обычно доли и единицы процента от времени нормальной эксплуатации изделия.

На втором участке интенсивность отказов изделия имеет минимальный, примерно постоянный номинальный уровень . Для этого периода работы изделия характерны внезапные отказы, вследствие действия ряда случайных факторов. Предупредить их приближение практически невозможно, тем более, что к этому времени в изделии остаются только полноценные компоненты, срок износа которых еще не наступил.

Рис.4 Зависимость интенсивности отказов изделия от времени .

Третий участок кривой характеризуется увеличением интенсивности отказов. На этом интервале времени наблюдаются как внезапные, так и постепенные отказы, связанные с износом (старением) элементов. При износе происходит частичное разрушение материалов, изменение их физико-химических свойств. Период износа завершается в точке , когда интенсивность отказов изделия приблизится к максимально допустимой для данного изделия.

При расчетах изделий на надежность с учетом внезапных отказов обычно принимают интенсивность отказов изделий, равную , т.е. расчет производят для нормального участка эксплуатации изделий.


Средние значения номинальной интенсивности отказов для элементов приведены в таблице 1. Эти значения даны для нормальных лабораторных условий эксплуатации изделий (температура – , относительная влажность – 60%, атмосферное давление – 1013 гПа). В реальных условиях эксплуатации внешние воздействия на ЭА могут существенно отличаться от нормальных. Изменение действующих реальных интенсивностей отказов элементов учитывается путем введения поправочных коэффициентов.

При ориентировочных оценках надежности особенности эксплуатации ЭА учитываются следующим образом

, где

– поправочный коэффициент.

всегда больше единицы. Коэффициент учитывает воздействия на ЭА механических факторов (вибраций, ударных нагрузок), – климатических (температуры, влажности), – условия работы при пониженном атмосферном давлении. Значения этих коэффициентов для полупроводниковой ЭА приведены в таблицах 2, 3, 4 соответственно.

При окончательном расчете надежности ЭА расчетные интенсивности отказов элементов уточняются с поправкой на электрические режимы элементов и определяются выражением

, где

– поправочный коэффициент, учитывающий температуру окружающей среды и коэффициент электрической нагрузки . Значения для различных типов элементов приведены в таблице 5. Величина для и температуре окружающей среды близкой к нормальной может быть осуществлено ниже единицы.

Коэффициент нагрузки элемента равен

, где

Н и Нд – соответственно электрическая нагрузка в реальном и допустимом номинальном (по техническим условиям) режимах. Коэффициент нагрузки либо расчитывается, либо определяется экспериментально, путем замера режимов работы для реальной ЭА.

Коэффициенты нагрузок для различных элементов ЭА находятся следующим образом.

Резисторы

, где

– реальная мощность, рассеиваемая резистором, – допустимая рассеиваемая резистором мощность по справочнику.

Конденсаторы

, где

– реальное напряжение на конденсаторе, – допустимое напряжение на конденсаторе по справочнику.

Полупроводниковые диоды

, , где

– средний рабочий выпрямленный ток, – выпрямленный допустимый ток, – обратное рабочее напряжение, – допустимое обратное напряжение.

Транзисторы

, , , , , , где

, – токи коллектора и эмиттера; , – допустимые токи коллектора и эмиттера; , , – напряжение коллектор-база, коллектор-эмиттер, эмиттер-база; , , – допустимые напряжения; – мощность, рассеиваемая транзистором; – допустимая мощность.


При определении надежности простой системы обычно вводятся следубщие ограничения.

  • Отказы, происходящие в системе, являются независимыми.

  • Отказы системы вызваны отказом элементов. При отказе любого из элементов происходит отказ системы.

Данные ограничения надежности систем без резервирования при расчетах устанавливают математическую модель, состоящую из последовательно включенных элементов (рис.6), независимо от действительных связей элементов в реальной системе.



Рис.6 Последовательная модель системы при расчетах на надежность


Если известны вероятности безотказной работы элементов , то вероятность безотказной работы всей системы равна

.

Полагая в соответствии с выражением (3.4), что и – интенсивность отказа элемента, имеем

, где

– (3.8)

суммарная интенсивность отказов, есть интенсивность отказов системы.

Аналогично выражению (3.6) определяется среднее время безотказной работы системы

. (3.9)

Из приведенных соотношений (3.7) – (3.9) следует:

  • Чем меньше интенсивность отказов элементов системы, тем выше характеристики надежности самой системы;

  • Чем меньше общее количество элементов системы, тем лучше характеристики надежности системы.

Таким образом, при конструировании систем необходимо стремиться к более простым системам, состоящим из высоконадежных элементов при заданных ограничениях на технические характеристики и стоимость системы.


3.2 Физическая надежность элементов ЭА


Надежность резисторов. Статистические данные показывают, что обрыв токопроводящего слоя и нарушение контакта резистора – наиболее типичный вид отказа (свыше 50%). Значительный процент отказов (35-40%) относят за счет перегорания токопроводящего слоя. Около 5% отказов вызываются резким изменением величины сопротивления (в 10-100 раз и более). Количество отказов резисторов меняется с течением времени и зависит от условий применения, технологии производства, качества материалов.

Нагрев резистивного слоя за счет мощности, рассеиваемой на резисторе в рабочем режиме, и резкие изменения температуры окружающей среды вызывают необратимые накапливающиеся изменения в резисторе, приводящие к внезапному отказу. Снижение электрической нагрузки резистора, создание условий работы, исключающих резкие изменения температуры, повышают его надежность.

На надежность резисторов отрицательно влияет влага. Она ускоряет коррозию контактных выводов, что приводит к их обрыву, и способствует растрескиванию защитных эмалей. Проникающая через трещины влага разрушает резистивный слой или проволоку.

При длительных механических воздействиях происходят усталостные изменения в материалах, используемых в конструкции резисторов, что приводит к скачкообразному изменению свойств резисторов и их отказу. Надежность резисторов существенно зависит от качества проводящего слоя и его геометрических размеров. Чем меньше сечение проводящего слоя и чем больше его длина, тем ниже надежность.

Мгновенные отказы резисторов возможны из-за нарушения целостности контактного узла. Наиболее частые отказы этого вида наблюдаются у поверхностных резисторов из-за возникающих механических перенапряжений. У объемных резисторов таких отказов нет, так как у них контактный вывод работает на сжатие.

Большинство резисторов имеют в начальный период работы такую же надежность, как и в период нормальной работы. Характерной особенностью резисторов при их работе в схемах является то, что их отказы в более чем 50% случаев вызывают отказы других элементов, например, пробой конденсаторов, короткие замыкания в электропроводниках и полупроводниковых приборах.

Надежность конденсаторов. Наиболее частым видом отказов конденсаторов является пробой диэлектрика и перекрытие изоляции между обкладками (поверхностный разряд). Эти отказы составляют около 80% всех отказов и возникают из-за наличия слабых мест в диэлектрике и технологических дефектов, допущенных при производстве. Довольно часто конденсаторы выходят из строя из-за обрывов выводов. Около 15% отказов конденсаторов вызваны уменьшением их емкости ниже допустимой. Чаще это наблюдается у электрических конденсаторов. Из-за уменьшения сопротивления изоляции выходят из строя около 5% конденсаторов.

Количество отказов конденсаторов зависит и от их назначения в схеме. Наибольшая опасность отказов наблюдается у разделительных и блокированных конденсаторов, наименьшая – у контурных и накопительных.

На надежность конденсаторов существенное влияние оказывает температура, влажность и частота питающего напряжения. Конденсаторы с большой электрической и тепловой нагрузкой имеют повышенное число отказов. Увеличение рабочего напряжения на конденсаторе всегда снижает сопротивление изоляции, нередко вызывает появление внутренней короны и пробой диэлектрика.

Нагрев конденсатора снижает электрическую прочность диэлектрика и сопротивление изоляции, увеличивает тангенс угла диэлектрических потерь. Причем местное уменьшение сопротивления изоляции вызывает повышение температуры конденсатора и, как следствие, еще большее возрастание потерь и снижение сопротивления изоляции. Развитие этих процессов приводит к пробою конденсатора.

Влажность окружающей среды является причиной увеличения тангенса угла диэлектрических потерь, снижение электрической прочности и сопротивления изоляции, что ведет к снижению пробивного напряжения. Это особенно сильно заметно в негерметизированных конденсаторах. Надежное влагозащитное покрытие замедляет протекание нежелательных процессов под действием влаги.

В противоположность резисторам основное количество отказов у конденсаторов наблюдается в начальный период эксплуатации. Так, около 70% всех пробоев происходит до наступления нормального периода работы.

Надежность полупроводниковых элементов. Параметры полупроводниковых диодов и транзисторов сильно зависят от внешних воздействий и главным образом от влияния температуры. Высшая температура для полупроводникового прибора определяется переходом базы в область собственной проводимости. Для германия эта температура лежит в пределах 80-100С, для кремния 150-200С, для карбида кремния 300-400С. Полупроводниковые приборы очень чувствительны к перегрузкам по току и по напряжению и выходят из строя даже при кратковременных перегрузках.

Основной причиной внезапных отказов полупроводниковых приборов является перенапряжение между коллектором и базой, возникающее во время переходных процессов. Иногда отказы могут быть обусловлены обратными импульсными выбросами на участке база-эмиттер. Частым видом внезапных отказов является также обрыв электрической цепи, короткие замыкания и недопустимые отклонения параметров элемента от номинала.

Постепенные отказы полупроводниковых приборов возникают большей частью из-за изменения их параметров, причем наиболее интенсивное изменение параметров отмечается в начальный период эксплуатации, составляющий несколько сотен часов. В дальнейшем скорость изменения параметров уменьшается и с наступлением периода старения снова растет. Изменения параметров полупроводниковых приборов большей частью наблюдаются при повышенных напряжениях на коллекторе или из-за проникновения влаги в прибор при нарушении герметичности. Такое нарушение вызывается обычно различием коэффициентов линейного расширения металлов и проходных изоляторов.

Надежность печатных плат. Основными параметрами, определяющими надежность печатных плат, являются тангенс угла диэлектрических потерь, диэлектрическая проницаемость, удельное объемное и поверхностное сопротивления, сопротивление изоляции между печатными проводниками. К факторам, наиболее влияющим на величину этих параметров относят температуру окружающей среды и влажность. Продолжительное нахождение печатных плат в условиях повышенной температуры и влажности, а особенно при одновременном их сочетании приводит к возникновению в платах необратимых явлений, вызывающих резкое уменьшение сопротивления изоляции, а это зачастую ведет к их отказу. Влага служит причиной образования плесени и коррозии металлов, которые могут вызвать разрыв электрической цепи.

Одной из причин, вызывающих отказы печатных плат является перекрытие по поверхности платы. Это явления возникает в результате увеличения относительной влажности воздуха вблизи поверхности платы по следующим причинам: из-за неоднородности поверхностного сопротивления печатных плат и их покрытий, образования поверхностных трещин на плате и на покрытии, уменьшении давления окружающей атмосферы. При уменьшении атмосферного давления напряжение поверхностного перекрытия твердых диэлектриков уменьшается и становится минимальным при давлении 800-950 Па, а затем снова возрастает. Повышенная температура окружающей среды снижает напряжение поверхностного перекрытия печатных плат. Старение материала изоляционного основания печатной платы приводит к значительному увеличению тангенса угла диэлектрических потерь, в результате чего происходит резкое возрастание уровня потерь и нередко отказ печатной платы.

Надежность печатных плат зависит также от количества соединений (паек), нанесенных на нее. С увеличением количества соединений увеличивается вероятность отказа.

Надежность интегральных схем. Интенсивность отказов ИМС лежит в пределах 10-6-10-9 ч-1, приближаясь к уровню высоконадежных элементов. Сравнение интенсивности отказов отдельных элементов ИМС и ИМС в целом показывает, что они практически равнозначны. Преимуществом является то, что степень функциональной сложности ИМС с малым и средним уровнем интеграции слабо отражается на их надежности.

Д

Рис.5 Процентное соотношение основных типов дефектов монолитных ИС.

ля ИМС прежде всего характерны внезапные отказы, обусловленные качеством изготовления (технологическими дефектами): разрывы соединений между контактной зоной на поверхности подложки (кристалла) и выводами корпуса, обрывы и короткие замыкания внутренних соединений. Процентное соотношение основных типов дефектов монолитных ИС указано на круговой диаграмме (рис.5). Внезапные отказы полупроводниковых ИМС составляют 80% от общего числа отказов. Свыше 50% отказов гибридных линейных ИМС связано с дефектами встроенных транзисторов и паяных соединений. Отказы контактов золотых проволочных выводов чаще всего происходят из-за обрыва проволочки около шарика ковары.

Наиболее слабым звеном полупроводниковых ИМС в пластмассовых корпусах являются внутренние проволочные соединения, дающие обрывы и короткие замыкания (более 90% отказов вызвано обрывами соединительных проводов). Основная причина таких отказов определяется различием температурных коэффициентов линейного расширения металла и обволакивающего материала, что приводит к возникновению термомеханических напряжений. Около 10% отказов полупроводниковых ИМС в пластмассовых корпусах происходит по причине электрической коррозии алюминиевой металлизации из-за недостаточной влагостойкости пластмасс и загрязнения поверхности окисла при герметизации. Типичны для таких ИМС и отказы

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: