Xreferat.com » Рефераты по технологии » Композиционные и порошковые материалы

Композиционные и порошковые материалы

мм.


4. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С МЕТАЛЛИЧСКОЙ
МАТРИЦЕЙ


Рис.5. Схема структуры (а) и армирования
непрерывными волокнами (б)
композиционных материалов


Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочным волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие или иную композицию, получили название композиционные ма­териалы (рис.5).

4.1. Волокнистые композиционные материалы.

На рис.5 при­ведены схемы армирования волокнистых композиционных материалов. Композиционные материалы с волокнистым наполни­телем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длины волокна к диаметру l/d ≈ 10ч103, и с непрерывным волокном, в которых l/d = . Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50–100 %), модуля упругости, коэффициента жесткости (Е/γ) и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.


Таблица1. Механические свойства композиционных материалов на металлической основе

Материал

σВ

σ-1

Е, ГПа

σВ

Е/γ

МПа

Бор–алюминий (ВКА–1А)

1300

600

220

500

84,6

Бор–магний (ВКМ–1)

1300

500

220

590

100

Алюминий–углерод (ВКУ–1)

900

300

220

450

100

Алюминий–сталь (КАС–1А)

1700

350

110

370

24,40

Никель–вольфрам (ВКН–1)

700

150


Прочность композиционных (волокнистых) материалов опреде­ляется свойствами волокон; матрица в основном должна пере­распределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть зна­чительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, воз­никающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные (σВ = 2500ч3500 МПа, Е = 38ч420 ГПа) и углеродные (σВ = 1400ч3500 МПа, Е = 160ч450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют σВ = 2500ч3500 МПа, Е = 450 ГПа. Нередко используют в ка­честве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибдено­вую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда тре­буются высокие теплопроводность и электропроводимость. Пер­спективными упрочнителями для высокопрочных и высокомодуль­ных волокнистых композиционных материалов являются нитевид­ные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие σВ = 15000ч28000 МПа и Е = 400ч600 ГПа.

В табл.1 приведены свойства некоторых волокнистых компо­зиционных материалов.

Рис.6. Зависимость модуля упругости Е (а) и временного сопротивления σВ (б) бороалюминиевого композиционного материала вдоль (1)
и поперек (2) оси армирования от объемного
содержания борного волокна

Композиционные материалы на металлической основе обладают высокой прочностью (σВ, σ-1) и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материа­лах уменьшают скорость распространения трещин, зарождаю­щихся в матрице, и практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль к поперек волокон и малая чувстви­тельность к концентраторам напряжения,

На рис.6 приведена зависимость σВ и Е бороалюминиевого композиционного материала от содержания борного волокна вдоль (1) и поперек (2) оси армирования. Чем больше объемное содержание волокон, тем выше σВ, σ-1 и Е вдоль оси армирования. Однако необходимо учитывать, что матрица может передавать напряжения волокнам только в том случае, когда существует прочная связь на поверхности раздела армирующее волокно — матрица. Для предотвращения контакта между волокнами ма­трица должна полностью окружать все волокна, что достигается при содержании ее не менее 15–20 %.

Рис.7. Длительная прочность бороалюминиевого композиционного материала, содержащего 50% борного волокна, в сравнении с прочностью титановых сплавов (а) и длительная прочность никелевого композиционного материала в сравнении с прочностью дисперсионно-твердеющих сплавов (б)

Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении или эксплуатации, так как это может привести к понижению прочности композиционного материала.

Анизотропия свойств волокнистых композиционных материа­лов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напря­жения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаро­прочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени (рис.7, а) с повы­шением температуры.

Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы с объемным армированием.

4.2. Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упроч­ненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций. Высокая прочность достигается при размере частиц 10–500 нм при среднем расстоянии между ними 100–500 нм и равномерном распределении их в матрице. Проч­ность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5–10об.%.

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяющихся в матричном металле, позволяет сохранить высокую проч­ность материала до 0,9–0,95Тпл. В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсноупрочненные ком­позиционные материалы могут быть получены на основе большин­ства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП (спеченный алюминиевый порошок). САП состоит из алюми­ния и дисперсных чешуек А12О3. Частицы А12О3 эффективно тормозят движение дислокаций и тем самым повышают прочность

сплава. Содержание А12О3 в САП колеблется от 6–9 % (САП-1) и до 13–18 % (САП-3). С увеличением содержания А12О3 σB по­вышается от 300 для САП-1 до 400 МПа для САП-3, а относительное удлинение соответственно снижается с 8 до 3%. Плотность этих материалов равна плотности алюминия, они не уступают ему по коррозионной стойкости и даже могут заменять титан и корро­зионно-стойкие стали при работе в интервале температур 250–500°С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность σ100 для сплавов САП-1 и САП-2 при 500°С составляет 45–55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов. Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2–З об.% двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно γ-твердый раствор Ni+20% Cr, Ni+15% Mo, Ni+20% Cr и Мо. Широкое при­менение получили сплавы ВДУ-1 (никель, упрочненный дву­окисью тория), ВДУ-2 (никель, упрочненный двуокисью гафния) и ВД-3 (матрица Ni+20% Сг, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. При темпера­туре 1200°С сплав ВДУ-1 имеет σ100≈75 МПа и σ1000≈65 МПа, сплав ВД-3 – 65 МПа. Дисперсно-упрочненные компози­ционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительности выдержки при данной температуре (см. рис.7).

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т.д.) и двигателей (лопаток компрессора и турбины и т.д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жидкости, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т.д., в горной промышленности (буровой инструмент, детали комбайнов и т.д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т.д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачок в увеличении мощности двигателей, энерге­тических и транспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из компо­зиционных материалов достаточно хорошо отработана.


5. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С НЕМЕТАЛИЧЕСКОЙ
МАТРИЦЕЙ


5.1. Общие сведения, состав и классификация

Рис.8. Схемы армирования
композиционных материалов

Композиционные материалы с неметаллической матри­цей нашли широкое применение. В качестве неметаллических мат­риц используют полимерные, углеродные и керамические мате­риалы. Из полимерных матриц наибольшее распространение полу­чили эпоксидная, фенолоформальдегидная и полиимидная. Уголь­ные матрицы коксованные или пироуглеродные получают из син­тетических полимеров, подвергнутых пиролизу. Матрица связы­вает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава ком­понентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах соста­вляет 60–80 об.%, в неориентированных (с дискретными волок­нами и нитевидными кристаллами) – 20–30 об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы опре­деляют прочность композиции при сдвиге и сжатии и сопротивле­ние усталостному разрушению.

По виду упрочнителя композиционные материалы классифи­цируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоскостные слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создавать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Рис.9. Зависимость между напряжением и деформацией при растяжении эпоксидного углепластика с различной схемой укладки упрочнителя: 1 – продольная; 2 – под углом 45є; 3 – взаимно перпендикулярная; 4 – поперечная

Применяется укладка упрочнителей из трех, четырех и более нитей (рис.8). Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут рас­полагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отр ыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем расположения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трех-направленных. Зависимость механических свойств композицион­ных материалов от схемы армирования приведена на рис.9.

5.2. Карбоволокниты

Карбоволокниты (углепласты) представляют собой ком­позиции, состоящие из полимерного связующего (матрицы) и уп­рочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи С–С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в ней-

тральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна пре­дохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются свя­зующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6–2,5 раза. Применяется вискеризация ните­видных кристаллов TiO2, AlN и Si3N4, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиро­лизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Рис.10. Значения модулей упругости (1), сдвига (2) и коэффициентов Пуассона (3) под углом к главному направлению композиционного материала, образованного системой трех нитей

Эпоксифенольные карбоволокниты КМУ-1л, упрочненный угле­родной лентой, и КМУ-ly на жгуте, вискеризованном нитевид­ными кристаллами, могут длительно работать при температуре до 200°С.

Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксиани-линоформальдегидном связующем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбово­локниты КМУ-2 и КМУ-2л на основе полиимидного связующего можно применять при температуре до 300°С.

Карбоволокниты отличаются высоким статическим и динами­ческим сопротивлением усталости (рис.10), сохраняют это свой­ство при нормальной и очень низкой температуре (высокая тепло­проводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойкие. После воздействия на воздухе рентгеновского излучения σИЗГ и Е почти не изменяются.

Рис.11. Зависимость модуля упругости Е, предела прочности σВ, ударной вязкости а и сопротивления усталости σ-1 карбостекловолокнита от содержания углеродных волокон (общее содержание наполнителя в композиции 62 об.%)

Теплопроводность углепластиков в 1,5–2 раза выше, чем теплопроводность стеклопластиков. Они имеют следующие элек­трические свойства: ρV=0,0024ч0,0034 Ом∙см (вдоль воло­кон); е=10 и tgδ=0,01 (при частоте тока 1010 Гц).

Карбостекловолокниты содержат наряду с угольными стеклян­ные волокна, что удешевляет материал. Зависимость механиче­ских свойств модифицированного карбоволокнита от содержания углеродных волокон показана на рис.11.

5.3. Карбоволокниты с углеродной матрицей.

Коксованные мате­риалы получают из обычных полимерных карбоволокнитов, под­вергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800–1500°С образуются карбонизированные, при 2500–3000°С графитированные карбоволокниты. Для полу­чения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100°С и остаточном давлении 2660 Па) метан раз­лагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет вы­сокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими меха­ническими и абляционными свойствами, стойкостью к термиче­скому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по зна­чениям прочности и ударной вязкости в 5–10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и ваку­уме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35–0,45), а износ мал (0,7–1 мкм на торможение).

Полимерные карбоволокниты используют в судо- и автомоби­лестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты при­меняют для изготовления деталей авиационной техники, аппара­туры для химической промышленности, в рентгеновском обору­довании и др.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.

Физико-механические свойства карбоволокнитов приведены в табл.2.

5.4. Бороволокниты

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и моду­лем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплекс­ные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения бороволокнитов исполь­зуют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при темпе­ратуре не свыше 100°С; КМБ-2к работоспособен при 300°С.


Влияние на механические свойства бороволокнита содержа­ния волокна приведено на рис.12, а влияние различных матриц – на рис.13.

Рис.12. Зависимость механических свойств бороволокнита КМБ-1 от содержания борного волокна: Е – модуль упругости;
σИЗГ – предел прочности при изгибе; G – модуль сдвига; τВ – предел
прочности при сдвиге

Бороволокниты обладают высокими сопротивлениями уста­лости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Рис.13. Зависимость разрушающего напряжения при изгибе бороволокнитов на различных связующих от температуры: 1, 2 – эпоксидное; 3 – полиимидное; 4 – кремнийорганическое связующее

Поскольку борные волокна являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью: λ=43 кДж/(м∙К); α=4∙10-6 С-1 (вдоль волокон); ρV=1,94∙107 Ом∙см; е=12,6ч20,5 (при частоте тока 107 Гц); tgδ=0,02ч0,051 (при частоте тока 107 Гц). Для бороволокнитов прочность при сжатии в 2–2,5 раза больше, чем для карбоволокнитов.

Физико-механические свойства бороволокнитов приведены в табл.2.

Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрес­соров, лопасти винтов и трансмиссионные валы вертолетов и т.д.).

5.5. Органоволокниты

Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной проч­ностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических воло­кон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

В органоволокнитах значения модуля упругости и температур­ных коэффициентов линейного расширения упрочнителя и свя­зующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1–3% (в дру­гих материалах 10–20%). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, дей­ствии ударных и циклических нагрузок. Ударная вязкость высо­кая (400–700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влаж­ном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100–150°С, а на основе полиимидного связующего и полиоксадиазольных волокон – при 200–300°С.

В комбинированных материалах наряду с синтетическими волокнами применяют минеральные (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью.

Органоволокниты применяют в качестве изоляционного и кон­струкционного материала в электрорадиоиромышленности, авиа­ционной технике, автостроении; из них изготовляют трубы, ем­кости для реактивов, покрытия корпусов судов и др.

Литература

  1. Гуляев А.П. «Металловедение», М.: 1968.

  2. Дальский А.М. «Технология конструкционных материалов», М.: 1985.

  3. Куманин И.Б. «Литейное производство», М.: 1971.

  4. Лахтин Ю.М. «Материаловедение», М.: 1990.

  5. Семенов «Ковка и объемная штамповка», М.: 1972.


Таблица 2. Физико-механические свойства однонаправленных композиционных материалов с полимерной матрицей

Материал

Плот­ность, т/м3


Предел прочности,

МПа

Модуль упругости, ГПа

Удельная жесткость Е/ρ, 103 км

Относительное удлинение при разрыве, %

Удельная проч-ность σ/ρ, км

Ударная вязкость, кДж/м2

Сопр. усталости на базе 107 циклов, МПа

Длит. прочн. при изгибе за 1000 ч, МПА

при рас-тяжении

при сжатии

при изгибе

при сдвиге

при рас-тяжении

при изгибе

при сдвиге

Карбоволокниты:

КМУ-1л

КМУ-1у

КМУ-1в

КМУ-2в


Бороволокниты:

КМБ-1м

КМБ-1к

КМБ-2к

КМБ-3к


Карбоволокнит с углер. матрицей КУП-ВМ


Органоволокниты:

с эластичным волокном

с жестким волокном


1,4

1,47

1,55

1,3


2,1

2,0

2,0

2,0


1,35


1,15–1,3


1,2–1,4


650

1020

1000

380


1300

900

1000

1300


200


100–

190

650–700


350

400

540


1160

920

1250

1500


260


75


180–200


800

1100

1200


1750

1250

1550

1450


640


100–180

400–450


25

30

45


60

48

60

75


42




120

180

180

81


270

214

260

260


160


2,5–8,0

35


100

145

160


250

223

215

238


165




2,80

3,50

5,35


9,8

7,0

6,8

7,2





8,6

12,2

11,5

6,2


10,7

13,0

12,5



0,22–0,6

2,7


0,5

0,6

0,6

0,4


0,3–0,5

0,3–0,4

0,3–0,4

0,3–0,4



10–20


2–5


46

70

65

30


43

50

65



8–15


50


50

44

84


90

78

110

110


12


500–600


300

500

350


400

350

400

420


240




480

880

900


1370

1220

1200

1300




Похожие рефераты: