Xreferat.com » Рефераты по технологии » Отчёт по практике на Минском фарфоровом заводе и в НИИСМе

Отчёт по практике на Минском фарфоровом заводе и в НИИСМе

также все скульптурные изделия отливают в много­кусочных формах. Кроме того, очень слож­ные изделия, особенно скульптурные, не могут быть отлиты в один прием, в одной многокусочной форме. Такие изделия офор­мляют по частям—отдельные части отли­вают в отдельных многокусочных формах, затем склеивают в одну цельную фигуру.

Приставные части — ручки к полым изде­лиям и носики к чайникам и кофейникам — также отливают отдельно, затем приклеивают к корпусу изделия. При ли­тейном способе изготовления изделий эти детали могут быть оформлены одновре­менно с корпусом изделия.

Отливка приставных частей ведется в многогнездных гипсо­вых формах, состоящих из двух створок. Створки этих форм изготовляют в виде круглых плит с отверстием в центре. Гнезда для деталей располагаются в радиальном направлении так, что один конец детали сообщается с центральным отвер­стием, служащим литником. Для более высокой производитель­ности литья деталей обычно их формы собирают в колонку, что дает возможность заливать большое количество единиц (бата­рейное литье) за один прием.

Сервизно-хозяйственные и скульптурные изделия отливают вручную и механизированным способом. Отливка изделия со­стоит из следующих операций: очистки гипсовых форм от при­липшей к ним массы, сборки их, заливки шликером, выдержки для набора черепка, слива избытка шликера, подвяливания до некоторого закрепления черепка, подрезки краев (или лит­ников), второго подвяливания сырого черепка до отставания от стенок форм и выборки сырого изделия из форм.

На полуавтомате гипсовые формы устанавливаются в со­ответствующих гнездах конвейера. При вращении стола последовательно формы подходят под ре­зервуар, откуда через сопла автоматически залива­ются шликером. Набор черепка завершается через определен­ную часть оборота стола, затем избыток шликера сливается.

Формованные или отлитые фарфоровые изделия подвяливаются в формах до некоторого отвердения черепка и отставания его от формы. Фарфоровые изделия, не подлежащие одностадийной сушке, оправляют после подвяливания на оправку. Операция оправки заключается в снятии заусенцев и неровностей, которые образовались на изделиях при их оформлении. Оправку производят на шпиндельном станке с помощью увлажненной губки.

Ручки и носики приклеивают к изделиям с помощью жижеля изготовляемого из сухих отходов изделий или из обычного шликера.

Изделия с приставленными деталями направляют в окон­чательную сушку.

В процессе оформления изделий получаются значительные технологические отходы массы в виде обрезков и брака свеже­формованного полуфабриката. Дефектами на изделиях при этой операции обработки являются складки, срывы (при фор­мовании), повреждения, втяжки (на литьевых изделиях) и др. Все эти отходы должны быть собраны в чистом виде и переданы в массозаготовительныи цех для переработки и добавки к свежей массе.


5.4.4 Сушка, утильный обжиг и глазурование изделий


После формования полуфабрикат надо высушить, это требуется как для выполнения последующих операций, так и для беспрепятственного проведения обжига.

Кристаллическая вода, химически связанная в глинистых минералах, не выделяется при сушке. Она отщепляется только во время обжига.

При сушке вода превращается в пар. Перевод воды из: жидкой фазы в газообразную требует значительного расхода тепловой энергии. Отнесенный к температуре воздуха 20°С он составляет примерно 2427-103 Дж на испарение 1 л воды. Сушка должна быть в значительной степени закончена перед обжигом, так как выделяющийся водяной пар при определенных условиях может охладиться до достижения точки росы. Конденсат осаждается на черепке и размягчает его, в результате чего изделие деформируется. Кроме того, при высокой температуре в зоне нагревания печи начинается интенсивное испарение воды. Поверхность изделия быстро высыхает, открытые поры сужаются и закрываются, препятствуя прониканию водяного пара наружу. В критических случаях это может привести к разрушению черепка.

Для сушки изделий тонкой керамики используют преимущественно влажный воздух. При сопоставлении плотностей сухого и влажного воздуха и водяного пара при температурах О и 100°С видно, что сухой воздух тяжелее водяного пара и влажного воздуха.

Влажный воздух благодаря своей меньшей плотности стремится в сушилке вверх. При этом он соприкасается с высушиваемыми изделиями, поглощает и увлекает с собой выделяющийся из них пар.

Для правильного ведения процесса сушки необходимо знать основные закономерности. Если сушка организована соответствующим образом, то возникает меньше дефектов. Процесс сушки осуществляется с поверхности, изделие должно сначала стать относительно сухим внутри, а уже затем его поверхность отдаст последнюю влагу.

Вода, находящаяся в порах, достигает поверхности, что вызвано увеличением ее объема при нагревании. Вода в порах, расположенных ближе к поверхности, испаряется и обеспечивает продвижение воды из пор, находящихся в нижних слоях.

После удаления значительной части воды из пор начинается усадка изделия. Так как вода, находящаяся в порах, не только обусловливает усадку, но и в значительной степени влияет на ее величину, она называется также усадочной. С началом усадки изделия поры сужаются, их диаметр уменьшается, в результате увеличивается капиллярный эффект. По мере нагревания изделий к их поверхности поступает уже водяной пар, поглощаемый теплоносителем. Процесс аналогичен всасыванию жидкости, поэтому через поры наружу может выходить и вода, окружающая частицы оболочкой. Между поверхностью и внутренней частью черепка возникает перепад (градиент) влажности, который постепенно снижается.

С повышением температуры начинает испаряться большая часть воды набухания. Она переходит через поверхность частиц в их водную оболочку, проникает в поры и достигает поверхности испарения. К этому времени внутри материала воды больше нет, остается только водяной пар, который диффундирует через черепок наружу.

Сушку обусловливают многие факторы. Дефекты массы и нарушения технологии ее приготовления проявляются в процессе сушки и ухудшают качество полуфабриката. Особое значение имеет влажность изделия до сушки. Массы с высоким влагосодержанием требуют длительной сушки. Необходимо устанавливать по возможности равномерную скорость сушки. Если при быстрой сушке водяной пар не может испариться полностью, то в черепке появляются напряжения. В результате возможна деформация или даже полное разрушение черепка.

Сушку можно проводить различными способами. Задача заключается в выборе технически наиболее приемлемого и экономически наиболее эффективного способа.

Непосредственный теплообмен нагретого воздуха с высушиваемой продукцией происходит при конвективной сушке. Теплоноситель при этом отдает накопленное тепло изделиям, поглощает выделяющийся водяной пар и выводит его из сушилки. Процессы теплопередачи и поглощения пара сопровождаются охлаждением поверхностей испарения. Поэтому горячий теплоноситель надо подводить непрерывно, иначе из-за снижения температуры произойдет конденсация пара.

Другие способы — это контактная и радиационная сушка, которые мало используются для тонкой керамики.

Для осуществления сушки имеет существенное значение система подачи теплоносителя к изделиям. По этому признаку различают сушку:

стационарную — изделия не перемещаются, теплоноситель воздействует на них неравномерно;

прямоточную — изделия и теплоноситель перемещаются в сушилке в одном направлении;

противоточную — изделия и теплоноситель перемещаются в сушилке в противоположных направлениях;

перекрестную — изделия передвигаются вдоль сушилки, а теплоноситель поперек;

перекрестно-противоточную — изделия перемещаются вдоль сушилки, теплоноситель многократно обновляется и движется поперек сушилки; в конце сушилки навстречу изделиям нагнетается горячий воздух.

Самые современные сушилки работают по принципу перекрестно-циркуляционно-многоступенчатых. Теплоноситель циклически многократно нагревается и насыщается влажным воздухом, чем достигаются превосходные результаты. Несмотря на относительно высокую скорость сушки, изделия имеют мало • дефектов.

Карусельная сушилка. Состоит из вращаемого вручную карусельного стола с отверстиями, через которые снизу по распределительной системе нагнетается воздух. Высушиваемые изделия, обычно кружки, опрокидывают над отверстиями карусельного стола. Сушка проводится до кожетвердого состояния. Затем полуфабрикат оправляют, приставляют ручки и переставляют в сушилку для окончательной сушки. Сушилку обогревают паровыми калориферами.

Камерная сушилка (рис. 19). Состоит из одной или нескольких отдельных камер. Сушка происходит на основе конвекции. Источником тепла может быть пар, горячий воздух или отходящие от печей газы. Тепло подводится к сушилкам через ребристые трубы.

Сушилку загружают вручную. Изделия устанавливают на полки или на этажерочные вагонетки. В камерных сушилках осуществляется одностадийная сушка. Изделия во время сушки неподвижны, а теплоноситель омывает их. Для организации равномерной сушки вентиляторами обеспечивают циркуляцию теплоносителя. Насыщенный водяным паром воздух удаляют из верхней части сушилки вытяжными вентиляторами. В камерных сушилках очень трудно достичь равномерного распределения потоков воздуха.

Основные недостатки сушилок — периодичность действия, большие потери тепла при загрузке и разгрузке, относительно длительное время сушки. Время сушки и тепловые потери можно сократить, используя секционные камерные сушилки.

Туннельная сушилка. Сушилка отличается от камерной: тем, что в ней перемещаются изделия и теплоноситель. Изделия вручную укладывают на транспортирующую ленту или устанавливают на вагонетки. Туннельные сушилки работают непрерывно. Передвижение изделий механизировано, используются такие же источники тепла, как в камерных сушилках. Сушилка состоит из обшитого теплоизоляционными плитами каркаса, на торцовых стенках которого находятся загрузочное и разгрузочное окна. Источники тепла такие же, как для всех остальных сушилок. Регулирующие устройства поддерживают заданные температуру, состав влажного воздуха и скорость сушки. Формы с изделиями через загрузочное окно помещают на люльки сушилки. Загрузка иногда механизирована, за исключением участков литья

Сушилки на поточных линиях оснащены пневматическими переставителями. Современное направление развития сушильной техники — это создание скоростных сушилок, отличающихся исключительно коротким сроком сушки.

Причину дефектов, появляющихся в процессе сушки, часто трудно установить, так как это может быть не только нарушение режима, но и отклонения от технологических параметров на предыдущих этапах производства. Такие дефекты, как деформация изделий, трещины, разрушение полуфабриката, проявляются только после сушки, и не всегда удается однозначно выявить причину того или иного дефекта. Существенное влияние на результат сушки оказывает состав массы. Высокое содержание глинистых составляющих и, как следствие, большое количество воды набухания при неправильно выбранном режиме сушки изделия обусловливают появление дефектов. Во время сушки в черепке образуются большие перепады влажности, из-за чего происходит деформация полуфабриката.

Причина деформации может быть заложена в технологии формования. Большая разница между частотами вращения шпинделя и ролика так же, как и сильное давление ролика, разрыхляет черепок, который из-за этого разрушается при нагревании во время сушки.

Интенсивная сушка, не учитывающая возможности перемещения влаги в полуфабрикате, также приводит к дефектам, потому что быстрый отбор влаги приводит к напряжениям в полуфабрикате. Сначала происходит деформация и появляются трещины, затем изделие разрушается..

Основное правило эксплуатации всех сушилок — соблюдение чистоты. Обязательно надо удалять пыль. Если на высушенном изделии вследствие конденсации появляются пятна ржавчины, то сушилку необходимо почистить. Металлические детали, с которых осыпается ржавчина, покрывают антикоррозийной краской.


Утильный обжиг. Назначение первого обжига — прежде всего упрочнить полуфабрикат. Относительно тонкий черепок необожженных изделий при глазуровании размокает и не выдерживает механического воздействия. Кроме того, в процессе первого обжига должно произойти очищение черепка, т. е. выгорание органических примесей, разложение выделяющих газ веществ. (Этого же можно достичь в зоне подогрева печей политого обжига.) Во время первого обжига в массе происходят следующие процессы:

испаряется не удалившаяся при сушке остаточная вода затворения и гигроскопическая влага (1—870);

в области температур 500—600 °С выделяется кристаллическая вода каолинита, масса обжигается «намертво» (необратимо), после чего ее нельзя больше пластифицировать водой; при более высоких температурах начинается спекание массы, прокаленный черепок приобретает прочность, которая зависит от температуры и длительности ее воздействия;

при температуре от 900 до 1000 °С расщепляются газообразные составляющие

Для политого обжига фарфора в туннельных печах, продолжительность процесса в которых в отличие от камерных печей поддерживается постоянной, особенно важно правильно проводить первый обжиг. Чтобы обеспечить дальнейшее превращение метакаолинита, возникшего при обезвоживании каолинита, для фарфоровых масс необходимо поддерживать высокую температуру первого обжига (950—1050°С). Этим предотвращаются такие дефекты политого обжига, как прыщ и пузырь.

Однако с усовершенствованием конструкции туннельных печей для политого обжига фарфора развивается противоположное, более экономичное направление в технологии обжига: с целью снижения расхода топлива первый обжиг проводят при низкой температуре (700—850°С), а очистку и дегазацию черепка обеспечивают во время политого обжига. Естественно, механическая прочность полуфабриката снижается, впрочем для глазурования она остается достаточной. Преимуществом более низкой температуры первого обжига является также быстрое охлаждение изделий, благодаря чему можно значительно повысить производительность печей.

При современном уровне развития техники первый обжиг можно проводить в щелевых печах, в которых чашки и установленные поодиночке тарелки обжигают за 30—60 мин, стопки тарелок по 10 шт. и более —за 6 ч. Предпосылкой скоростного первого обжига является хорошая сушка. Содержание остаточной влаги в полуфабрикате не должно превышать 2%. С повышением влажности массы сильно снижается прочность необожженного черепка. На это необходимо обращать особое внимание при транспортировании полуфабриката например установленных в стопки тарелок.

Особенно тщательно надо проводить охлаждение, так как большая часть трещин во время первого обжига образуется при охлаждении. Рекомендуется замедление процесса охлаждения в области температуры превращения кварца 575 °С, связанного со скачкообразным изменением объема материала.. Толстостенные изделия, такие как фарфоровая посуда для общественного питания, можно обжигать однократно, минуя первый обжиг.

На Минском фарфоровом заводе утильный обжиг производится в следующих печах: полые изделия обжигаются в печи ЛЕР, а плоские изделия в печи типа ПОК. Температурные режимы печей приведены в приложении.


Глазурование


5.4.5 Политой обжиг


Фарфоровый полуфабрикат приобретает нужные свойства — механическую прочность, газо- и водонепроницаемость, терми­ческую устойчивость только после политого обжига при высо­кой температуре. Поэтому политой обжиг является завершаю­щей и ответственнейшей операцией в технологии изготовления фарфора. Он называется политым потому, что ему подверга­ются изделия, политые глазурью. Иногда политой обжиг име­нуется также вторым или окончательным обжигам, так как он следует за первым обжигом.

Политой обжиг фарфоровых изделий производится в нижней (политой) камере горна или соответствующих туннельных и Щелевых печах. Его осуществляют при определенных температурных и газо­вых режимах, точное соблюдение которых зависит от регулиро­вочной способности печи. При обжиге фарфора большое значение имеет процесс нагревания полуфабриката от температуры 1050 до 1080°С. В этот период нужно обеспечить избыток воздуха и полное сгорание топлива без образования сажи. С одной стороны, это необходимо для дегазации черепка, особенно если он недостаточно прокален в первом обжиге, с другой, — для предотвращения оседания частиц сажи, которые очень плохо выгорают вторично. Опыт показывает, что неправильное нагревание способствует образованию пятен и наколов на поверхности глазури. Поэтому рекомендуется делать окислительную выдержку 30— 60 мин при температуре 1050—1080 °С до перехода к восстановительному периоду. В отличие от фаянса и витриес-чайна для обжига фарфора необходим восстановительный период, который оказывает решающее влияние на качество полуфабриката и во время которого могут образоваться многие огневые дефекты.

Почти во всех сырьевых материалах в качестве примесей содержатся Fe2O3 и сульфаты. Так, в фарфоровой массе содержится около 0,5% Fe2O3 , который при температуре 1300°С отщепляет кислород:


3Fe2O3 = 2Fe3O4 + 0,5O2, или 2Fe2O3 = 4FeO + O2.


При температуре выше 1300°С черепок в значительной степени уплотнен, глазурь расплавлена, поэтому кислород не может выделиться и содействует образованию пузырей. Следовательно, дегазация должна быть смещена в область таких температур, при которых черепок еще пористый и кислород может улетучиваться. Для этого необходимы восстановительные газы (СО или Н2). Горение должно осуществляться при недостатке воздуха. Процесс восстановления должен произойти до плотного спекания черепка и растекания глазури. Восстановление Fe2O3 происходит согласно уравнению:

Fe2O3 + СО = 2FеО + CO2.


В период восстановления, пока черепок еще пористый, СО или H2 отнимает у Fe2O3 кислород, который в противном случае позднее отщепляется сам и становится причиной образования прыщей и пузырей. Во время этого этапа обжига в дымовых газах должно содержаться от 2 до 5 % СО и H2. Для надежности восстановительную среду поддерживают немного дольше, чем нужно теоретически; таким образом, обжиг проводят при недостатке воздуха в области температур от 1050 до 1300 °С.

Необходимость, восстановления Fe2O3 обусловлена также следующими причинами.

Разложение Fe2O3 на FeО и О2 может осуществляться без восстановительной среды при температурах выше 1300 °С, однако оно происходит не полностью. Fe2O3 окрашивает невосстановленный черепок в желтоватый цвет. Чтобы получить белую окраску, весь имеющийся Fe2O3 надо перевести в FeО. Последний, соединяясь с SiO2, образует силикат железа, имеющий зеленовато-голубой оттенок, который почти незаметен и не снижает качества изделия.

Образующийся при восстановлении FeO значительно улучшает условия спекания черепка и ускоряет его уплотнение. Аналогичное явление происходит с CaSO4 В присутствии СО или Н2 он разлагается быстрее, чем в окислительной среде, с отщеплением SO3.

Восстановления не требуется для керамических масс, спекающихся при более низких температурах (1300 °С), при которых выделения газов не происходит, так же как и для масс, не достигающих плотного спекания, из которых газы могут выделиться в любое время.

В последний период политого обжига черепок должен созреть, благодаря чему фарфор приобретает высокую прочность, становится просвечивающим и плотным. Глазурь равномерно растекается и создает красивую блестящую поверхность фарфора.

Качество политого обжига зависит от максимальной температуры обжига, длительности выдержки и состава газовой среды. Состав дымовых газов в этот период обжига должен быть близким к нейтральному. Избыток воздуха может привести к повторному окислению Fe0, а восстановительная среда ухудшает экономические показатели обжига, белизну и качество поверхности фарфора.

В последний период обжига подъем температуры замедляется, расход топлива увеличивается. Окончательная температура обжига, °С,1340—1380 (в щелевых печах до 1430)

Максимальная температура обжига зависит от состава массы и равномерности распределения температур по сечению садки изделий.

Политой обжиг фарфора проходит четыре периода: 1) нагревание и дегазация до температуры 1050—1080 °С в окислительной среде;

2) восстановление в области температур (1050—1080) — 1300 0С;

3) максимальная выдержка в нейтральной среде до температуры 1340—1380°С;

4) охлаждение от максимальной до комнатной температуры.

Продолжительность обжига фарфоровых изделий в туннельных печах составляет 27—35 ч, фаянсовой посуды — 18— 27 ч.

Для большинства видов изделий продолжительность нагревания и охлаждения теоретически можно значительно сократить, однако огнеприпас, которым мы распологаем при современном уровне знаний, не позволяет этого сделать.

В щелевых печах, в которых огнеприпас практически не используется, обжиг посуды сокращен до 2 – 5 ч.

В технике обжига наряду с режимами имеет значение организация производства. Расход топлива и капитальные затраты на сооружение печей должны быть по возможности низкими, срок службы и надежность в работе высокими. Раньше самыми целесообразными были камерные печи (горны) с многодневным режимом обжига, которые не соответствуют современному уровню развития теплотехники.

Современные типы печей — непрерывнодействующие туннельные и камерные периодического действия с выкатным подом. Разновидностью туннельных печей являются щелевые, разновидностью камерных печей с выкатным подом — колпаковые.

Туннельные печи. Недостаточно широкое распространение туннельных печей в керамической промышленности в предшествующий период объясняется их особенностями. Туннельные печи не отличаются такой гибкостью изменения режима обжига, как например горны. Это значит, что для туннельной печи нужен приблизительно одинаковый ассортимент и достаточно большое количество изделий, подаваемых на загрузку постоянно. Поэтому туннельные печи стали применять только с развитием концентрации производства на больших предприятиях. Годовая производительность средней туннельной печи длиной 85 м, высотой и шириной садки по 1 м 1500— 1800 т.

Туннельную печь делят на три зоны: подогрева — от входа в печь до первых горелок; обжига — средняя часть, в которой находятся горелки; охлаждения — от конца зоны обжига до выхода из печи.

В первой зоне изделия нагреваются поступающими из зоны обжига продуктами горения, которые перемещаются навстречу движению печной вагонетки. Продукты горения отсасываются из туннеля через расположенные в боковых стенках каналы и выводятся к дымовой трубе или вытяжному вентилятору. В оснащенной горелками (до 90 шт.) зоне обжига изделия нагреваются до температуры спекания.

В зоне охлаждения вагонетка и садка должны отдать тепло, что осуществляется с помощью рекуператоров, представляющих собой систему труб или каналов, через которые продувается воздух. Полученный таким образом нагретый воздух передается для других технологических процессов, например для сушки, или возвращается в туннельную печь (вдувание нагретого воздуха в зону подогрева, нагревание воздуха, подаваемого для горения в зону обжига). При выходе из печи садка должна быть охлаждена до температуры 100—150 °С.

Во всех трех зонах туннельной печи требуется равномерное распределение температур и газовой среды по всему сечению. Новейшие туннельные печи для этой цели оснащены системами циркуляции, нагнетания и вытяжки.

В настоящее время для улучшения равномерности распределения температур во всех зонах печей как при нагревании, так и при охлаждении применяется принцип поперечной циркуляции теплоносителя. При этом используется преимущественно естественный термический напор (нагретые газы легче, они сами поднимаются). Однако эффективность циркуляции зависит от наличия продольных разрывов в садке.

Благодаря многочисленным техническим усовершенствованиям (вентиляторы, трубопроводы, горелки, шиберы, контрольно-измерительные и регулирующие приборы) туннельная печь стала сложным агрегатом, для правильного обслуживания которого необходимы рабочие высокой квалификации.

Контроль обжига осуществляется с помощью обширной измерительной системы.

Канал обжига должен быть хорошо закрыт от влияния внешней среды. Снизу это обеспечивается плотным смыканием платформ вагонеток (в поперечном направлении), а у стен (в продольном направлении) специальными устройствами — лабиринтами, песочным уплотнением. В начале печи для уплотнения раньше часто устанавливали жалюзи. Теперь их заменили воздушными завесами.

Печные вагонетки перемещаются по рельсам. Вагонетка состоит из огнеупорной платформы, металлического основания и ходовой части. На платформе обычно устанавливают канализированный под, который воспринимает садку и выполняет важнейшую технологическую функцию, обусловливая аэрогидродинамические параметры обжига. В связи с тем что механическая прочность платформы невелика, основание ее должно быть жестким, чтобы оградить огнеупорный материал от повреждений.

Различают две основные системы туннельных печей — открытого пламени и муфельные. Так как для обжига все в большей степени применяется чистый природный газ, в промышленности преобладают печи открытого пламени. Муфельные печи устарели. Для исключения влияния дымовых газов на качество полуфабриката все чаще используют электрические туннельные печи.

Туннельные печи открытого пламени можно применять там, где используют чистое топливо, или где изделия при соприкосновении с дымовыми газами не портятся. Для некоторых изделий такой контакт даже необходим, например при обжиге

фарфора, когда необходимы химические реакции между продуктами горения и изделиями.

В печах открытого пламени горячие дымовые газы поступают прямо в туннель. Они омывают обжигаемые изделия и должны при этом равномерно распределиться по сечению садки, обеспечив непрерывное нагревание. Следует избегать непосредственного соприкосновения изделий с пламенем, чтобы предотвратить их пережог. Поэтому горение происходит в топках или в разрывах садки (импульсные или высокоскоростные горелки), откуда продукты горения поступают к обжигаемым изделиям. Благодаря такой прямой теплопередаче печь открытого пламени достаточно экономична, отличается высокой производительностью. В промышленности тонкой керамики наиболее распространены печи с сечением канала 1—1,2 м3. В печах, имеющих более крупное сечение, труднее обеспечить необходимый аэрогидродинамический режим обжига. При большой высоте садки очень сильно возрастают нагрузки на огпеприпас, в результате чего существенно увеличиваются расходы на обжиг.

Электрические туннельные печи обеспечивают абсолютно чистую газовую среду, поэтому их применяют преимущественно для обжига декорированных изделий. В качестве нагревателей используют канталовые (Кантал — сплав для электронагревательных элементов — сталь, содержащая Fe, Сг. А1, Со, с максимальной температурой использования 1150— 1375 °С, разработан в Швеции) стержни. Электронагреватели обеспечивают температуру обжига до 1200 °С. Благодаря использованию системы рециркуляции, отводу горячего воздуха из зоны обжига в зону подогрева, где тепло передастся изделиям, достигается низкий удельный расход энергии (0,06— 0,1 кВт/кг), отнесенный к загружаемой продукции, включая вспомогательные материалы,

Широкому распространению электрических туннельных печей препятствует в настоящее время повышенный спрос на электроэнергию. Однако по мере истощения мировых запасов органического топлива и совершенствования атомных электростанций значение электрических печей возрастает.

Но туннельные печи имеют некоторые недостатки. С одной стороны, из-за высокой производительности печи все производство (неуправляемо) сосредоточивается в процессе обжига, с другой стороны, загрузка изделий в печь — процесс трудоемкий, необходим дорогой огнеприпас, возникают большие расходы на загрузку и выгрузку печей. Трудно оптимизировать процесс обжига из-за инертности крупногабаритной туннельной печи и длительного обжига, составляющего для фарфора (политой обжиг) 25—35 ч.

В туннельных печах обжигаемые изделия в конце зоны подогрева достигают температуры 400—800 °С, а затем попадают на первый участок зоны обжига), образуемый первой группой горелок, настроенных на сильное окисление. Эта группа горелок обеспечивает нагревание изделий до температуры 1050—1080 °С, после чего изделия поступают на второй участок зоны обжига, где горелки работают при недостатке воздуха. Здесь в фарфоровой массе происходит восстановление Fe2О3.

В связи с тем что продукты горения в туннельной печи перемещаются навстречу изделиям, т. е. к входной двери, восстановительные газы попадают на первый окислительный участок зоны обжига. Для сохранения окислительной среды на первом участке восстановительные составляющие продуктов горения на границе между двумя участками дожигаются благодаря вдуванию воздуха через воздушную завесу.

Важно, чтобы на втором участке зоны обжига в канал печи не подсасывался побочный воздух, который может нарушить восстановительную среду. Поэтому печи для политого обжига на участках, начиная с перехода к восстановительной фазе, работают с избыточным давлением. Это необходимо, так как уплотнение печного пространства никогда не бывает полным.

Следовательно, при обжиге наряду с температурой и газовой средой большое внимание следует уделять давлению в объеме печи.

На последнем участке зоны обжига происходит созревание фарфора. Здесь также нежелательно проникание побочного воздуха, так как необходима стабильная, равномерная газовая среда, приближающаяся к нейтральной.

Процесс охлаждения в туннельных печах в значительной степени определяется устойчивостью огнеприпаса к сменам температур. Тонкостенные фарфоровые изделия можно охладить за несколько минут. Однако такой процесс сопровождается быстрым выходом из строя дорогостоящего огнеприпаса. Для повышения качества изделий важно, чтобы охлаждение проходило в газовой среде, не содержащей продуктов горения. Зона обжига находится под давлением, поэтому продукты горения стремятся в зону охлаждения. Чтобы препятствовать этому, в конце печи вдувают воздух для получения противодавления в зоне охлаждения. Кроме того, для предотвращения перемещения дымовых газов в начале зоны охлаждения размещают отсасывающие отверстия.

Режим работы печей политого обжига обусловливается теплопроизводительностью групп или отдельных горелок, газовой средой, аэрогидродинамическим режимом в объеме печи, количеством вдуваемого воздуха, эффективностью рекуператоров в зоне охлаждения. Эти величины постоянно контролируют и поддерживаютавтоматически на заданном уровне, за исключением пропускной способности рекуператоров. Процесс спекания — самый энергоемкий в керамической промышленности, поэтому особо важное значение имеет рациональное использование энергии. Для экономии энергии необходимо:

оптимально загружать объем печи, соблюдать установленные плотность садки и длительность процесса;

максимально использовать тепло продуктов горения в зоне подогрева за счет поперечной циркуляции,

снижать поглощение тепла плитами вагонеток за счет футеровки вагонеток легковесными огнеупорными материалами;

подогревать воздух, подаваемый для горения, с помощью рекуператоров оптимальной конструкции, действующих в зоне охлаждения (температура воздуха до 600 ° С);

использовать в сушилках воздух, отбираемый из зоны охлаждения печей;

избегать потерь от боя при транспортировании полуфабриката и огне-припаса;

снижать массу огнеприпаса.

Распределение температур в туннельной печи в значительной степени зависит от аэрогидродинамического режима в канале, который в свою очередь обусловлен плотностью садки. Изделия, которые не омываются продуктами горения, нагреваются недостаточно. Для отсасывания продуктов горения

в плотно загруженной туннельной печи необходимо большое разрежение в зоне подогрева, что способствует подсасыванию побочного воздуха и снижению тем самым коэффициента полезного действия.

Садка вагонетки образуется столбами капселей с плоскими изделиями или загруженными продукцией этажерками. Перемещающиеся вдоль и частично поперек печи продукты горения должны насколько возможно равномерно омывать изделия. Для этого необходимо, чтобы столбы капселей стояли не плотно, а с зазорами. Потеря производительности может быть компенсирована повышением скорости перемещения вагонеток.

К элементам садки относятся также опорные стойки, образующие канализированный под вагонетки, через который продукты горения подводятся к нижней части садки. Излишня плотная садка вынуждает поддерживать большое разрежение в начале печи, что повышает опасность появления таких дефектов, как задувка, засорка. Кроме того, с увеличением плотности садки повышается опасность недожога середины ее нижней части и пережога внешней части.

Следует учесть, что при пережоге изделий, находящихся вблизи горелок, повреждается огнеприпас, особенно кордиеритовый капсель.

Большое значение для режима обжига имеет соблюдение свободных проходов для потоков тепла в канализированном поду и в разрывах садки.

Необходимо также следить за устойчивостью столбов капселей и этажерок, иначе в печи может произойти завал и повреждение вагонеток. Это случается чаще всего из-за обвала садки, которая заклинивается между вагонеткой и стенкой печи. В таких случаях приходится останавливать печь. Работы по ликвидации аварии проводятся в тяжелых условиях. При загрузке изделий в капседь и на вагонетку необходимо придерживаться разработанных схем садки. Фарфоровые чашки и кружки легко деформируются в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: