Xreferat.com » Рефераты по технологии » Прикладная теория цифровых автоматов

Прикладная теория цифровых автоматов

10001


Таблиця 2.5


Вміст керуючої пам`яті.

A FY FX

FA0

FA1

Оп.

A1A2A3A4A5A6

T1T2T3T4T5T6

T7T8T9

T10T11T12T13T14T15

T16T17T18T19T20T21

1 000000 000000 100 000001 001100
2 000001 000000 101 000010 011001
3 000010 000000 110 000011 001100
4 000011 000000 001 001100 000100
5 000100 000000 010 001001 000101
6 000101 000110 110 000111 000110
7 000110 101100 000 000000 000000
8 000111 000111 000 001000 000000
9 001000 001001 000 001110 000000
10 001001 001000 100 001010 011000
11 001010 000000 110 001110 001011
12 001011 100111 000 000000 000000
13 001100 000001 100 001101 001110
14 001101 000000 110 001001 010010
15 001110 000100 100 001111 010111
16 001111 000000 101 010001 010000
17 010000 000000 110 010100 010101
18 010001 000000 110 010010 011110
19 010010 000110 110 011111 010011
20 010011 000000 011 100011 001110
21 010100 100000 000 000000 000000
22 010101 000000 010 001001 010110
23 010110 000001 000 100101 000000
24 010111 001010 001 011000 010101
25 011000 101010 000 000000 000000
26 011001 000000 110 011011 011010
27 011010 000000 001 011111 100001
28 011011 001101 001 011100 011101
29 011100 001110 011 010100 001110
30 011101 000101 000 011110 000000
31 011110 001111 010 100001 100000
32 011111 000111 101 010100 100010
33 100000 100011 000 000000 000000
34 100001 010000 110 010100 100011
35 100010 000000 010 010100 100101
36 100011 000001 101 100100 011111
37 100100 001011 000 000101 000000
38 100101 010001 100 001110 001001


2.4. Синтез схеми автомата.


Схема СФА являє собою мультиплексор, який в залежності від коду логічної умови, що перевіряється, передає на вихід Z1 значення відповідної ЛУ. При цьому сигнал Z2 завжди є інверсією сигналу Z1. Таким чином, отримаємо слідуючі вирази для Z1 і Z­2:

Z1=X1щT7щT8T9+X2щT7T8щT9+X3щT7T8T9+P1T7щT8щT9+P2T7щT8T9+P3T7T8щT9

Z2=щZ1


або, звівши до заданого базису (4 АБО-НІ), отримаємо

Z1=щ щ(щ щ(A+B+C+D)+E+F), де


A=щ щ( X1щT7щT8T9)=щ(щX1+T7+T8+щT9)

B=щ щ( X2щT7T8щT9)=щ(щX2+T7+щT8+T9)

C=щ щ( X3щT7T8T9)=щ(щX3+T7+щT8+щT9)

D=щ щ( P1T7щT8щT9)=щ(щP1+щT7+T8+T9)

E=щ щ( P2T7щT8T9)=щ(щP2+щT7+T8+щT9)

F=щ щ( P3T7T8щT9)=щ(щP3+щT7+щT8+T9)

Інформація, що надходить на адресні входи ПЗП формується таким чином: Ai=A0iZ1+A1iZ2 або, приводячи до заданого базису, отримуємо Ai=щщ(щ(щA0i+щZ1)+щ(щA1i+щZ2)).

Синтезуємо тепер схему дешифратора, що формує сигнали мікрооперацій yi. Поява одиниці, відповідної кожному Y, відбувається при появі на вході дешифратора коду даного Y, тобто Yi=T2eЩT3eЩT4еЩT5еЩT6е, де еО{0,1} T0=щT, T1=T. Або приводячи до заданого базису, отримаємо: Yi=щ(щ щ(T2щe+T3щe+T4ще+T5ще)+T6ще). Таким чином, схема, що формує сигнал Y з п`ятирозрядного коду виглядає таким чином(мал. 2.4)

T6щe

1 1 1 Yi

T2щe


Мал. 2.4. Схема формування сигналу Yi.


Враховуючи, що розряд T2 рівний “1" при формуванні тільки двох сигналів Y18 і Y20, то схему(мал. 2.4) будемо використовувати для формування Y1, Y20, для яких співпадають молодші чотири розряди та для Y18, для якого молодші чотири розряди співпадають з кодом порожньої операторної вершини. А для всіх інших Y схему можна спростити (мал.2.5.).


T6щe

1 Yi

T3щe


Мал.2.5. Спрощена схема формування сигналу Yi.

Згідно з наведеними схемами запишемо формули для всіх Yi.


Y1=щ (щ щ(T2+T3+T4+T5)+щT6)

Y2= щ(T3+T4+щT5+T6)

Y3= щ(T3+T4+щT5+щT6)

Y5= щ(T3+щT4+T5+T6)

Y7= щ(T3+щT4+T5+щT6)

Y8= щ(T3+щT4+щT5+T6)

Y9= щ(T3+щT4+щT5+щT6)

Y10=щ(щT3+T4+T5+T6)


Сигнали мікрооперацій yj отримаємо, об'єднуючи по “або" виходи відповідні операторам Yi, в яких зустрічається МО yj. При цьому будемо користуватися таблицею


Таблиця 2.5.


Розподіл МО за мікро-

командами


МО

номери МК

y1

1,2,3

y2

1,7,17

y3

5,10,14,20

y4

5,10,13,15

y5

2,8,10,12,15,18

y6

3,7,9,12,13,15

y7

7,11

y8

11

y9

1

y10

1

y11

3,14

y12

2,12,16

y13

5,8,17

y14

16

y15

8

y16

7,16

y17

9,11,12,14

y18

10,14,15

y19

2,10,12,15

y20

3,11,13

y21

13

y22

14

y23

15

y24

16

y25

17

y27

20

y28

20

y29

8

y30

5


На наступному етапі синтезуємо схеми РАМК і РМК, використовуючи щRщS тригери. Скористаємося класичним методом синтезу регістрів і заповнимо слідуючу таблицю (табл. 2.6.).


Таблиця 2.6.


Синтез РАМК та РМК


С

Ai

Qt

Qt+1

Ct

щR

щS

0

0

0

0

0

*

*

0

0

1

1

0

*

*

0

1

0

0

0

*

*

0

1

1

1

0

*

*

1

0

0

0

1

*

1

1

0

1

0

1

0

1

1

1

0

1

1

1

0

1

1

1

1

1

1

*


У результаті отримаємо слідуючу схему для базового елементу РАМК та РМК (мал.2.6).

Ai

1 S TT Q

СІ C

R

“Reset” R щQ

Мал. 2.6. Базовий елемент регістра.


Схема РАМК містить 6 таких елементів, а схема РМК - 21. При побудові схеми сигнали щT1..щT21 будемо знімати з інверсних виходів елементів регістрів. Кількість мікросхем ПЗП визначимо за формулою: NПЗП­=]R/3[, де R - розрядність мікрокоманди R=21, NПЗП=7. Для зберігання мікропрограми досить однієї лінійки ПЗП, оскільки QПЗП=8, тобто одна мікросхема розрахована на зберігання 256 трьохбітових комбінацій, а в нашому випадку потрібно тільки 38. При побудові схеми будемо записувати в РАМК інверсію адреси, а до ПЗП будемо подавати адресу з інверсних виходів елементів регістра, таким чином, ми заощадимо 6 елементів-інверторів у СФА. З врахуванням вищесказаного побудуємо схему автомата з примусовою адресацією мікрокоманд(мал. 2.7).




41


3.СИНТЕЗ АВТОМАТА З ПРИРОДНОЮ АДРЕСАЦІЄЮ МІКРОКОМАНД


3.1. Принцип роботи автомата.


При природній адресації микрокоманд існує три формата МК (мал. 3.1.).


П 1 FY m ОМК


П 1 FX l 1 FA r УМК1 П 1 Ж l 1 FA r УМК2


Мал.3.1. Формати мікрокоманд автомата з природною адресацією..


Тут формат ОМК відповідає операторній вершині, УМК1-умовній, а УМК2-вершині безумовного переходу. При подачі сигналу “пуск" лічильник ЛАМК обнуляється, і за сигналом СІ відбувається запис МК до регістра. СФМО формує відповідні МО при П=1 або видає на всіх виходах нулі при П=0. СФА в залежності від П і вмісту поля FX, формує сигнали Z1 і Z2. Сигнал Z1 дозволяє проходження синхроімпульсів на лічильний вхід ЛАМК, а Z2 дозволяє запис до лічильника адреси наступної МК з приходом синхроімпульсу.

Визначимо розрядність полів. l=]log2(L+1)[, де L-число умовних вершин. L=6, l=3

m=]log2T[ Т- число наборів мікрооперацій, що використовуються в ГСА, в нашому випадку Т=17, m=5

r=]log2 Q[, Q - кількість мікрокоманд.


3.2.Перетворення початкової ГСА.


Перетворення буде полягати в тому, що до всіх операторних вершин, пов'язаних з кінцевою, вводиться сигнал y0, а між всіма умовними вершинами, які пов'язані з кінцевою, вводиться операторна вершина, що містить сигнал y0. Крім цього, в ГСА вводяться спеціальні вершини безумовного переходу X0, відповідні формату УМК2. Введення таких вершин необхідне для виключення конфліктів адресації мікрокоманд. У автоматі з природною адресацією (рис3.2.) при істинності(помилковість) логічної умови перехід здійснюється до вершини з адресою на одиницю великим, а при (помилковість)істинності ЛУ перехід відбувається за адресою, записаною в полі FA. У нашому випадку будемо додавати одиницю при істинності ЛУ або при переході з операторной вершини. Якщо в одній точці сходиться декілька переходів по “1" або з операторної вершини, то всі вершини з яких здійснювався перехід, повинні були б мати однакову (на одиницю меншу ) адресу, ніж наступна команда. Але це неможливо.



Z1 +1

сі Z2 А ЛАМК



Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: