Xreferat.com » Рефераты по технологии » Расчет валов редуктора

Расчет валов редуктора

height="463" align="ABSMIDDLE" />6987 Н



одшипники в опорах В и Г промежуточного вала одинаковы. Поэтому расчет ведется для наиболее нагруженного подшипника.

Д

Для нереверсивного привода и вращении входного вала по часовой стрелки с наиболее нагруженным подшипником опоры Г (12041 Н )

8387 Н



ля частореверсивного привода с одинаковым характером нагружения при вращении валов в обе стороны для расчета Р можно использовать зависимость.

где – коэффициент относительной нагрузки i опоры при вращении валов в разные стороны.

У нас наиболее нагруженной является опора Г: Н; Н.

Тогда 0,64

РГ7190 Н

9.4.3. Расчетная долговечность подшипников.

, часов

Роликоподшипник №7207 с=38500 Н и Р=

частота вращения подшипника n2=150 мин-1

Для частореверсивного привода с наиболее нагруженными подшипником опоры Г (РГ=7190 Н)

Для нереверсивного привода при вращении входного вала против часовой стрелки и наиболее нагруженными подшипником опоры В (РВ=6878 Н)

34445 часов > t=3000 часов



Для нереверсивного привода при вращении входного вала по часовой стрелке и наиболее нагруженными подшипником опоры Г (РГ=8387 Н)

17857 часов > t=3000 часов



29850 часов > t=3000 часов

9

При невыполнении условия долговечности подшипника рекомендуется заменить его на более тяжелую серию или конструктивно увеличить внутренний диаметр подшипника, имеющих большее значение "с".


Наиболее опасными сечениями для промежуточного вала, проверяемые расчетом, являются сечения под зубчатыми колесами передач. Размеры сечений обычено одинаковые и проверочный расчет осуществляется только одного наиболее нагруженного сечения вала.


.8. Проверочный расчет промежуточного вала на прочность.

Для промежуточного вала выполненного за одно с шестерней, то есть в виде вал шестерни (рисунок 7.12 [6]), достаточно провести расчет только сечения IV (рисунок 9.5.) под зубчатым колесом.

9.8.1. Материал вала и предельные напряжения.

Материал промежуточного вала, выполненного в виде вала шестерни, соответствует материалу шестерни 40ХН. Термообработка – улучшение. По таблице П2 [6] твердость 248…293 НВ, а временное сопротивление σв=880 МПа.


П

Поверхностная термообработка зубьев шестерни не влияет на общую термообработку вала и его прочностные характеристики.


редел выносливости при симметричном цикле изгиба для легированной стали.

σ

Для легированной стали σ-1=0,43·σв


-1=0,35·σв+100 = 0,34·880+100= 408 МПа

Предел выносливости при симметричном цикле касательных напряжений.

τ-1= 0,58·σ-1=0,58·408=237 МПа

9

Рисунок 9.7.

.8.2. Сечение IV. В этим сечении вала (рисунок 9.5.) при частом реверсировании действует суммарной изгибающий момент =171,3 Нм и вращающий момент Т2=190,2Нм. Концентрация напряжений обусловлена наличием шпоночного паза. Размеры сечения вала (рисунок 9.7.) приведены с использованием таблицы 9.8. [3].

а) Полярный момент сопротивления

мм3

б) Момент сопротивления изгибу

мм3


в) Амплитуды и максимальные касательные напряжения при частом реверсировании (симметричный цикл).

τ

Амплитуды и средние касательные напряжения при нереверсированом (отнулевой цикл).

τа= τм==


а= τмах==МПа; τm=0

г) Амплитуда цикла нормальных напряжений изгиба

σа=31,96 МПа

д) Средние нормальные могут возникнуть от осевой силы. Так как в принятых конструктивных исполнениях сила Fa не действует в сечении IV-VI, а передается ступицей червячного колеса над сечением, то – σм=0, где АIV – площадь вала в сечении IV-VI.

е) Коэффициент запаса прочности по нормальным напряжениям.

=

где Кσ – эффективный коэффициент концентрации напряжений;

εσ – масштабный фактор для нормальных напряжений;

β – коэффициент, учитывающий влияние шероховатости поверхности (при Rа= 0,4…3,2 мкм принимают β=0,97…0,9);

Ψσ – коэффициент чувствительности к асимметрии цикла напряжений;

Кσ = 1,9 – для сечения вала с одной шпоночной канавкой при σв=880 МПа (по таблице 8.5. [3]);

εσ = 0,73 – для легированной стали при d=40 мм по таблице 8.8. [3];

β = 0,96 – при шероховатости поверхности Rа= 0,8…мкм;

Ψσ = 0,15 – для легированной стали странице 300 [5].

ж) Коэффициент запаса прочности по касательным напряжениям

=

где Кτ, ετ, ψτ – Коэффициенты, учитывающий влияние на касательные напряжения аналогичных факторов, что и для нормальных напряжений.

Кτ = 1,9 – для сечения вала с одной шпоночной канавкой при σв=880 МПа (по таблице 8.5. [3]);

ετ = 0,75 – для легированной стали;

β = 0,96 – при шероховатости поверхности Rа= 0,8…мкм;

ψτ = 0,1 – для легированной стали странице 300 [5].

з) Результирующий коэффициент запаса прочности.

3,53 > [S] = 2

При невыполнении условия прочности для вал-шестерни увеличивают диаметры рассматриваемых сечений. При невыполнении условия прочности для вала из стали 45, которая задается в предварительных расчетах, назначают новую более качественную легированную сталь или увеличивают диаметры.


9.9. Реакции опор и вращающие и изгибающие моменты тихоходного вала.

В

Для схем 1…5 и 7 привода расчетные схемы тихоходных валов приведены на рисунке 9.9…9.11,9.13…9.15. Для схемы 4 привода расчетная схема тихоходного вала аналогична приведенной на рисунке 9.15.


разработанной конструкции редуктора (рисунок 7.12 [6]) тихоходный вал опирается на два радиальных шарикоподшипника, установленных "враспор". При этом расчетные точки Д и С принимаются в середине подшипников, как показано на конструктивных схемах, приведенных в верхней части рисунков 9.8. а и б. Эти рисунки соответствуют вращению входного вала против часовой стрелке и по часовой стрелке. Требуемые расчетные расстояния l7 = 146 мм; l8=54 мм берутся из эскизного проекта редуктора, а расстояние l9=85 мм с учетом расположения звездочки цепной передачи и муфты предельного момента на тихоходном валу. Рекомендации по выбору l9 даны во II части [6].

9.9.1. Составляющие силы от цепной передачи на вал (рисунок 9.3.).

а) Вертикальная составляющая

Fцz = Fц·sinα =6181,8·sin 30° = 3091 H

б) Горизонтальная составляющая

Fцy = Fц·cosα =6181,8·cos 30° = 535 H

9.9.2. Реакции опор от сил в зацеплении колес и от цепной передачи.

9.6.2.1. При вращении входного вала против часовой стрелке.

а) В плоскости ХOY

∑МДY = 0;

10485Н

∑МСY = 0;

2682 Н

Проверка ∑FY = 0; 2682+2449-10485+5354=0

Реакции найдены правильно.

б) В плоскости XOZ

∑МСZ = 0;

201 Н

∑МДZ = 0;

3017 Н

Проверка ∑FZ = 0; 3017-6309+201+3091=0

Реакции найдены правильно.

в) Результирующие радиальные реакции в опорах

4037 Н

10487 Н

г) Суммарная внешняя осевая сила действует в направлении опоры С, а подшипники установлены "враспор".

F

Так как опора Д и С использованы радиальные подшипники, то осевых составляющие SД и SC от радиальных нагрузок на опоры отсутствуют.


В схеме 3 Fa∑= Fa2 II – Fa2 II = 0, т. е. Осевой нагрузки на подшипники нет.


a∑= Fa1 II = 2341 H

9

В схемах 1 и 4 с прямозубой цилиндрической передачей II ступени и горизонтальным расположением цепной передачи реверсирование не влияет на величины нагрузок в опорах Д и С и изгибающие моменты в тихоходном валу.


.6.2.2. При вращении входного вала по часовой стрелке (рисунок 9.6,б).

а) В плоскости ХOY

∑МДY = 0;

8350Н

∑МСY = 0;

547 Н

Проверка ∑FY = 0; 547+2449–8350+5354=0

Реакции найдены правильно.

б) В плоскости XOZ

∑МСZ = 0;

9010 Н

∑МДZ = 0;

390 Н

Проверка ∑FZ = 0; 390–6309+9010–3091=0

Реакции найдены правильно.

в) Результирующие радиальные реакции в опорах

672 Н

12284 Н

г) Суммарная внешняя осевая сила действует в направлении опоры Д, а подшипники вала установлены "враспор".

Fa∑= Fa1 II = 2341 H

9.6.3. Построение эпюр изгибающих моментов (рис 9.4.).

9.6.3.1. При вращении входного вала против часовой стрелке (рис 9.6,а).

а) Плоскость ХОY

Сечения Д и И – МДZ=0; МИZ=0

Сечение VI слева – MVIZ =2682·146·10-3=391,6 Н·м

Сечение VI справа – MVIZ =2682·146·10-3 – 234110-3=178 Н·м

Сечение С (VII) – MСZ =5354·85·10-3=455 Н·м

б) Плоскость ХOZ

Сечения Д и И – МДY=0; МИY=0

Сечение IV – MIVY =3017·146·10-3=440,5 Н·м

Сечение С (VII) – MСY =3091·85·10-3=262,7 Н·м

в) Максимальные изгибающие моменты в сечениях IV и V

MIV=589,4 Н·м

MV=525,4 Н·м

9.6.3.2. При вращении входного вала по часовой стрелке (рис 9.5,б).

а) Плоскость ХОY

Сечения Д и И – МДZ=0; МИZ=0

Сечение VI слева – MVIZ =547·146·10-3=79,9 Н·м

Сечение VI справа – MVIZ =546·146·10-3 + 234110-3=293,4 Н·м

Сечение С (VII) – MСZ =5354·85·10-3=455 Н·м

б) Плоскость ХOZ

Сечения Д и И – МДY=0; МИY=0

Сечение IV – MIVY =390·146·10-3=57 Н·м

Сечение С (VII) – MСY =3091·85·10-3=262,7 Н·м

в) Максимальные изгибающие моменты в сечениях IV и V

=298,9 Н·м

=525,4 Н·м

9.10. Расчет подшипников быстроходного вала.

9.10.1. Эквивалентная радиальная нагрузка.

RE=(X·V·Rr+Y·Ra)·KБ·KT

V=1; KT=1; Kб=1,8 (смотри раздел 9.4.1. расчета)

а) При вращении входного вала против часовой стрелке.

Так как в двух опорах Д и С использованы одинаковые радиальные шариковые подшипники № 211, то расчет производим только подшипника опоры "с", которая имеет наибольшею радиальную 10487 Н и осевую 2341 Н нагрузки.

Подшипник 211 имеет: d = 55 мм; Д = 100 мм; В = 21 мм; С = 43600 Н; С0 = 25000 Н – статическая грузоподъемность.

Отношение . Этой величине (по таблице 9.18. [3]) соответствует е = 0,287 (получаем, интерполируя)

Отношение 0,223 < e. Следовательно, по таблице 9.18 [3] х=1 и у=0.

1·1·10487·1,8·1=18877 Н


б

В случае когда одна из опор имеет большую радиальную нагрузку, но не воспринимает осевую нагрузку, а на вторую опору действует радиальная и осевая нагрузки необходим расчет эквивалентных нагрузок на обе опоры.


) При вращении входного вала по часовой стрелке.

Для опоры С; которая не воспринимает осевой нагрузки х=1 и у=0.

1·1·12284·1,8·1=22111 Н

Для опоры Д

Отношение . Этой величине (по таблице 9.18. [3]) соответствует е = 0,287 (получаем, интерполируя)

Отношение 3,48 > e. При этом, по таблице 9.18 [3] х=0,56 и у=1,52.

(0,56·1·672+1,52·2341)·1,8·1=7082 Н

Следовательно, наиболее нагруженным является так же подшипник опоры С.

9.10.2. Эквивалентная нагрузка с учетом переменного режима работы.

П

Для нереверсивного привода с вращением входного вала против часовой стрелке и наиболее нагруженным подшипником опоры С (18877 Н )

13148 Н



одшипники в опорах Д и С промежуточного вала одинаковы. Поэтому расчет ведется для наиболее нагруженного подшипника.

Д

Для нереверсивного привода с вращением входного вала по часовой стрелке и наиболее нагруженным подшипником опоры С (22111 Н )

15400 Н



ля частореверсивного привода с одинаковым характером нагружения при вращении валов в обе стороны и с наиболее нагруженным подшипником опоры С (18877 Н и 22111 Н ) при 0,854

=

14364 Н где

9.4.3. Расчетная долговечность подшипников.

, часов

Р=3 – для шарикоподшипников;

n3=47,6 мин-1 частота вращения тихоходного вала редуктора;

с=43600 Н – для шарикоподшипника № 211

Для частореверсивного привода с наиболее нагруженными подшипником опоры С (РС=14364 Н)

Для нереверсивного привода при вращении входного вала против часовой стрелке и наиболее нагруженными подшипником опоры С (РС=13148 Н)

12767 часов > t=3000 часов



Для нереверсивного привода при вращении входного вала по часовой стрелке и наиболее нагруженными подшипником опоры С (РС=15400 Н)

7944 часов > t=3000 часов

Эта минимальная долговечность подшипника является расчетной также для реверсивного привода с не установленными характеристиками реверсирования.



9792 часов > t=3000 часов

9.11. Проверочный расчет промежуточного вала на прочность.

Эскизное проектирование редуктора, в передачах которого использованы хорошие материалы с высокими показателями, показало компактность разработанной конструкции с относительно большими диаметрами тихоходного вала. С целью получения рациональной конструкции всего редуктора произведено уменьшение предварительно выбранных в разделах 7.2.5. и 7.3.3. При этом улучшено качество материала с предварительно принятой в расчетах стали 45 на легированную сталь 40Х.

Новые выбранные диаметры тихоходного вала: на участке VII под подшипником dVII=55 мм; на участке VI под колесом dVI=60 мм ; на участке VIII выходной части вала под муфтой dVIII=50 мм.

9.11.1. Материал вала и предельные напряжения.

Материал – 40Х. Термообработка – улучшение. По таблице П2 [6] твердость 223…262 НВ, а временное сопротивление σв=655 МПа.


Предел выносливости при симметричном цикле изгиба для легированной стали 40Х.

σ

Для легированной стали σ-1=0,43·σв


-1=0,35·σв+100 = 0,34·655+100 = 329 МПа

Предел выносливости при симметричном цикле касательных напряжений.

τ-1= 0,58·σ-1 = 0,58·329 = 191 МПа

9.11.2. Сечение VI. В этим сечении вала (рисунок 9.6.) при частом реверсировании действует суммарной изгибающий момент =589,4 Нм и вращающий момент Т3=575,4 Нм. Концентрация напряжений обусловлена наличием шпоночного паза. Размеры сечения вала (рисунок 9.8.) приведены с использованием таблицы 9.8. [3].

а

Рисунок 9.8.

) Полярный момент сопротивления

мм3

б) Момент сопротивления изгибу

мм3


в) Амплитуды и максимальные касательные напряжения при частом реверсировании (симметричный цикл).

τ

Амплитуды и средние касательные напряжения при нереверсированом (отнулевой цикл).

τа= τм==


а= τмах==МПа; τm=0

г) Амплитуда цикла нормальных напряжений изгиба

σа=32,28 МПа


д) Средние нормальные напряжения

σм=0, тек как Fa не действуют в сечении VI -VI.

е) Коэффициент запаса прочности по нормальным напряжениям.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: