Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Керамзит

1.Введение:

Керамзит представляет собой легкий пористый материал ячеистого строения в виде гравия, реже в виде щебня, получаемый при обжиге легкоплавких глинистых пород, способных всучиваться при быстром нагревании их до температуры 1050 – 1300 С в течение 25–45 мин. Качество керамзитового гравия характеризуется размером его зерен, объемным весом и прочностью. В зависимости от размера зерен керамзитовый гравий делят на следующие фракции: 5 – 10, 10 – 20 и 20 – 40 мм, зерна менее 5 мм относят к керамзитовому песку. В зависимости от объемного насыпного веса (в кг/м3) гравий делят на марки от 150 до 800. Водопоглощение керамзитового гравия 8–20 %, морозостойкость должна быть не менее 25 циклов.

Керамзит применяют в качестве пористого заполнителя для легких бетонов, а также в качестве теплоизоляционного материала в виде засыпок.

Керамзитовый гравий — частицы округлой формы с оплавленной поверхностью и порами внутри. Керамзит получают главным образом в виде керамзито­вого гравия. Зерна его имеют округлую форму. Структура пористая, ячеистая. На поверхности его часто имеется бо­лее плотная корочка. Цвет керамзитового гравия обычно темно-бурый, в изломе — почти черный. Его получают вспучиванием при обжиге легкоплавких глин во вращающих печах. Такой гравий с размерами зерен 5 – 40 мм морозоустойчив, огнестоек, не впитывает воду и не содержит вредных для цемента примесей. Керамзитовый гравий используют в качестве заполнителя при изготовлении легкобетонных конструкций.

Керамзитовый щебень — заполнитель для легких бетонов произвольной формы, преимущественно угловатой с размерами зерен от 5 до 40 мм, получаемый путем дробления крупных кусков вспученной массы керамзита.

Некоторые глины при обжиге вспучиваются. Например, при производстве глиняного кирпича один из видов бра­ка— пережог — иногда сопровождается вспучиванием. Это явление использовано для получения из глин пористого ма­териала — керамзита.

Вспучивание глины при обжиге связано с двумя про­цессами: газовыделением и переходом глины в пиропластическое состояние.

Источниками газовыделения являются реакции восста­новления окислов железа при их взаимодействии с органи­ческими примесями, окисления этих примесей, дегидрата­ции гидрослюд и других водосодержащих глинистых минералов, диссоциации карбонатов и т. д. В пиропластическое состояние глины переходят, когда при высокой температуре в них образуется жидкая фаза (расплав), в результате чего глина размягчается, приобретает способность к пластической деформации, в то же время становится газонепроницаемой и вспучивается выделяющимися газами.

Для изготовления керамзитобетонных изделий нужен не только керамзитовый гравий, но и мелкий пористый заполнитель. Керамзитовый песок — заполнитель для легких бетонов и растворов с размером частиц от 0,14 до 5 мм получают при обжиге глинистой мелочи во вращающих и шахтных печах или же дроблением более крупных кусков керамзита.

Производство керамзитового песка по обычной техно­логии во вращающейся печи неэффективно. Некоторая примесь песчаной фракции получается при производстве керамзитового гравия за счет разрушения части гранул в процессе термообработки, однако он сравнительно тяжелый, так как мелкие частицы глинистого сырья практически не вспучиваются (резервы газообразования исчерпываются раньше, чем глина переходит в пиропластическое состоя­ние). Кроме того, в зоне высоких температур мелкие гра­нулы разогреваются сильнее крупных, при этом, возможно, их оплавление и налипание на зерна гравия.

На многих предприятиях керамзитовый песок получают дроблением керамзитового гравия, преимущественно в вал­ковых дробилках. Себестоимость дробленого керамзитового песка высока не только в связи с дополнительными затра­тами на дробление, но главным образом потому, что выход песка всегда меньше объема дробимого гравия. Коэффи­циент выхода песка составляет 0,4—0,7, т. е. в среднем из 1 м3 гравия получают только около 0,5 м3 дробленого керамзитого песка. При этом почти вдвое возрастает его на­сыпная плотность.

В настоящее время при получении керамзитового песка лучшей считают технологию его обжига в кипящем слое.

В вертикальную печь загружается глиняная крошка крупностью до 3 или 5 мм, получаемая дроблением под­сушенной глины или специально приготовленных по пла­стическому способу и затем высушенных гранул. Через ре­шетчатый (пористый) под печи снизу под давлением по­дают воздух и газообразное топливо (или же горячие газы из выносной топки). При определенной скорости подачи газов слой глиняной крошки разрыхляется, приходит в псевдоожиженное состояние, а при ее увеличении как бы кипит. Газообразное топливо сгорает непосредственно в кипящем слое. Благодаря интенсификации теплообмена в кипящем слое происходит быстрый и равномерный нагрев материала. Частицы глины обжигаются и вспучиваются примерно за 1,5 мин. Перед подачей в печь обжига глиня­ная крошка подогревается в кипящем слое реактора тер­моподготовки примерно до 300 °С, а готовый песок после обжига охлаждается в кипящем слое холодильного устрой­ства. Насыпная плотность получаемого керамзитового пе­ска— 500—700 кг/м3. К зерновому составу керамзитового песка предъявляются требования, аналогичные требова­ниям к природному песку, но крупных фракций в нем дол­жно быть больше.

Проблему получения керамзитового песка, достаточно эффективного по свойствам и себестоимости, нельзя счи­тать полностью решенной. Часто при получении керамзитобетона в качестве мелкого заполнителя применяют вспу­ченный перлит, а также природный песок.


Сырье.

Сырьем для производства керамзита служат глинистые породы, относящиеся в основном к осадочным горным. Некоторые камнеподобные глинистые породы — глинистые сланцы, аргиллиты — относятся к метаморфическим.

Глинистые породы отличаются сложностью минералогического состава и, кроме глинистых минералов (каолинита, монтмориллонита, гидрослюды и др.) содержат кварц, по­левые шпаты, карбонаты, железистые, органические при­неси.

Глинистые минералы слагают глинистое вещество — наиболее дисперсную часть глинистых пород (частицы мельче 0,005 мм). Собственно глинами называют глинистые породы, содержащие более 30% глинистого вещества.

Для производства керамзита наиболее пригодны монт-мориллонитовые и гидрослюдистые глины, содержащие не более 30% кварца. Общее содержание SiO2 должно быть не более 70%, А12О3 — не менее 12% (желательно около 120%), Fe2O3 + FeO — до 10%, органических примесей -1-2%.

Пригодность того или иного глинистого сырья для производства керамзита устанавливают специальным исследованием его свойств. Важнейшее из требований к сырью -вспучивание при обжиге.

Вспучиваемость характеризуется коэффициентом вспу­чивания

где VК — объем вспученной гранулы керамзита;

Vc — объем сухой сырцовой гранулы до обжига.

Второе требование к сырью (в значительной степени связанное с первым) — легкоплавкость. Температура об­жига должна быть не выше 1250°С, и при этом переход значительной части наиболее мелких глинистых частиц в расплав должен обеспечить достаточное размягчение и вязкость массы. Иначе образующиеся при обжиге глины газы, не удерживаемые массой, свободно выйдут, не вспу­чив материал.

Третье из важнейших требований — необходимый ин­тервал вспучивания. Так называют разницу между пре­дельно возможной температурой обжига и температурой начала вспучивания данного сырья. За температуру начала вспучивания принимают ту температуру, при которой уже получается керамзит с плотностью гранулы 0,95 г/см3. Предельно возможной температурой обжига считается тем­пература начала оплавления поверхности гранул.

Для расширения температурного интервала вспучива­ния используют такой прием, как опудривание сырцовых глиняных гранул порошком огнеупорной глины, что позво­ляет повысить температуру обжига и при этом избежать оплавления гранул.


Применение.

Наиболее широкое применение керамзитобетон находит в качестве стенового материала. В ряде районов страны стеновые панели из керамзитобетона стали основой массо­вого индустриального строительства. Особенно эффектив­но применение для стеновых панелей хорошо вспученного легкого керамзитового гравия марок 300, 400, до 500 (по насыпной плотности).

Плотность конструкционно-теплоизоляционного керам­зитобетона для однослойных стеновых панелей, как прави­ло, составляет 900—1100 кг/м3, предел прочности при сжа­тии — 5—7,5 МПа. Такой бетон в конструкции выполняет одновременно несущую и теплоизоляционную функции. В двух- или трехслойных стеновых панелях требуемую не­сущую способность может обеспечить слой (или два слоя) конструкционного керамзитобетона, а теплозащитную — слой крупнопористого теплоизоляционного керамзитобето­на плотностью 500—600 кг/м3.

Исследования, проведенные в Белорусском политехни­ческом институте (С.М.Ицкович, Г.Т.Широкий и др.), Алма-Атинском НИИстромпроекте (М.3.Вайнштейн, В.П.Грицай и др.), Уралниистромпроекте (Г.В.Геммер-линг, А.Н.Чернов и др.), показали, что переход от одно­слойной конструкции панелей к двух- или трехслойной с разделением несущей и теплозащитной функций стен и возложением их на соответствующие слои конструкционно­го и теплоизоляционного керамзитобетона повышает каче­ство и надежность панелей, снижает их материалоемкость.

Теплоизоляционный крупнопористый керамзитобетон - самый легкий бетон, который можно получить на данном заполнителе. Его плотность при минимальном расходе це­мента лишь немного больше насыпной плотности керамзи­тового гравия.

На керамзите марок 700, 800 получают конструкцион­ные легкие бетоны с пределом прочности при сжатии 20, 30, 40 МПа, используемые для производства панелей пере­крытий и покрытий, в мостостроении, где особенно важно снизить массу конструкций.


2.Номенклатура

В ГОСТ 9759—76 предусматриваются следующие фрак­ции керамзитового гравия по крупности зерен: 5—10, 10— 20 и 20—40 мм. В каждой фракции допускается до 5% бо­лее мелких и до 5% более крупных зерен по сравнению с номинальными размерами. Из-за невысокой эффективности грохочения материала в барабанных грохотах трудно добиться разделения керамзита на фракции в пре­делах установленных допусков.

По насыпной плотности керамзитовый гравий подраз­деляется на 10 марок: от 250 до 800, причем к марке 250 относится керамзитовый гравий с насыпной плотностью до 250 кг/м3, к марке 300 — до 300 кг/м3 и т. д. Насыпную плотность определяют по фракциям в мерных сосудах. Чем крупнее фракция керамзитового гравия, тем, как правило, меньше насыпная плотность, поскольку крупные фракции содержат наиболее вспученные гранулы.

Для каждой марки по насыпной плотности стандарт устанавливает требования к прочности керамзитового гра­вия при сдавливании в цилиндре и соответствующие им марки по прочности (табл.). Маркировка по прочности позволяет сразу наметить область рационального применения того или иного керам­зита в бетонах соответствующих марок. Более точные дан­ные получают при испытании заполнителя в бетоне

Требования к прочности керамзитового гравия


Марка по насыпной плотности Высшая категория качества Первая категория качества
Марка по прочности Предел прочности при сдавливании в цилинд­ре, МПа, не менее Марка по прочности Предел прочности при сдавливании в цилиндре, МПа, не менее
250 П35 0,8 П25 0,6
300 П50 1 П35 0,8
350 П75 1,5 П50 1
400 П75 1,8 П50 1,2
450 П100 2,1 П75 1,5
500 П125 2,5 П75 1,8
550 П150 3,3 П100 2,1
600 П150 3,5 П125 2,5
700 П200 4,5 П150 3,3
800 П250 5,5 П200 4,5

Прочность пористого заполни­теля - важный показатель его качества. Стандартизована лишь одна методика опреде­ления прочности пористых заполнителей вне бетона — сдавливанием зерен в цилиндре стальным пуансоном на заданную глубину. Фиксируемая при этом величина напряжения принимается за условную прочность заполни­теля. Эта методика имеет принципиальные не­достатки, главный из которых — зависимость показателя прочности от формы зерен и пустотности смеси. Это настолько искажает дей­ствительную прочность заполнителя, что ли­шает возможности сравнивать между собой различные пористые заполнители и даже за­полнители одного вида, но разных заводов. Методика определения прочности керамзи­тового гравия основана на испытании од­ноосным сжатием на прессе отдельных гранул керамзита. Предварительно гранулу стачива­ют с двух сторон для получения параллельных опорных плоскостей. При этом она приобрета­ет вид бочонка высотой 0,6—0,7 диаметра. Чем больше количество испытанных гранул, тем точнее характеристика средней прочности. Чтобы получить более или менее надежную характеристику средней прочности керамзита, достаточно десятка гранул.

Испытание керамзитового гра­вия в цилиндре дает лишь условную относительную харак­теристику его прочности, причем сильно заниженную. Установлено, что дей­ствительная прочность керамзита, определенная при испы­тании в бетоне, в 4-5 раз превышает стандартную харак­теристику. К такому же выводу на основе опытных данных пришли В. Г. Довжик, В. А. Дорф, М. 3. Вайнштейн и дру­гие исследователи.

Стандартная методика предусматривает свободную засыпку керамзитового гравия в цилиндр и за­тем сдавливание его с уменьшением первоначального объе­ма на 20%. Под действием нагрузки прежде всего проис­ходит уплотнение гравия за счет некоторого смещения зе­рен и их более компактной укладки. Основываясь на опыт­ных данных, можно полагать, что за счет более плотной укладки керамзитового гравия достигается уменьшение объема свободной засыпки в среднем на 7%. Следователь­но, остальные 13% уменьшения объема приходятся на смятие зерен (рис.1).Если первоначальная высота зер­на D, то после смятия она уменьшается на 13%.

Рис. 1. Схема сдав­ливания зерен керам­зита при испытании Рис.2. Схема укладки зерен керамзита



Высококачественный керамзит, обладаю­щий высокой прочностью, как правило, харак­теризуется относительно меньшими, замкну­тыми и равномерно распределенными порами. В нем достаточно стекла для связывания час­тичек в плотный и прочный материал, образу­ющий стенки пор. При распиливании гранул сохраняются кромки, хорошо видна корочка. Поверхность распила так как материал мал

Водопоглощение заполнителя выражается в процентах от веса сухого мате­риала. Этот показатель для некоторых видов пористых заполнителей нормируется (напри­мер, в ГОСТ 9759—71). Однако более нагляд­ное представление о структурных особенностях заполнителей дает показатель объемного водопоглощения.

Поверхностные оплавленные корочки на зернах керамзита в начальный период (даже при меньшей объемной массе в зерне и большей пористости) имеют почти в два раза ниже объемное водопоглощение, чем зерна щебня. Поэтому необходима технология гравиеподобных заполнителей с поверхностной оплавленной корочкой из перлитового сырья, шлаковых расплавов и других попутных про­дуктов промышленности (золы ТЭС, отходы углеобогащения). Поверхностная корочка керамзита в первое время способна задержать проникновение во­ды вглубь зерна (это время соизмеримо со временем от изготовления легкобетонной сме­си до ее укладки). Заполнители, лишенные корочки, поглоща­ют воду сразу, и в дальнейшем количество ее мало изменяется..

Между водопоглощением и прочностью зе­рен в ряде случаев существует тесная корре­ляционная связь. Чем больше водопоглощение, тем ниже прочность пористых заполнителей. В этом проявляется дефектность структуры ма­териала. Например, для керамзитового гра­вия коэффициент корреля­ции составляет 0,46. Эта связь выявляется более отчетливо, чем связь прочности и объем­ной массы керамзита (коэффициент корреля­ции 0,29).

Для снижения водопоглощения предпринимаются попытки предварительной гидрофоби-зации пористых заполнителей. Пока они не привели к существенным положительным ре­зультатам из-за невозможности получить не­расслаивающуюся бетонную смесь при одно­временном сохранении эффекта гидрофобизации.

Особенности деформативных свойств предопределяются пористой структурой заполнителей. Это, прежде всего, отно­сится к модулю упругости, который существен­но ниже, чем у плотных заполнителей Собственные деформации (усадка, набуха­ние) искусственных пористых заполнителей, как правило, невелики. Они на один порядок ниже деформаций цементного камня. При исследованиях деформаций керамзита все образцы при насыщении водой дают набу­хание, а при высушивании — усадку, но вели­чина деформаций разная. После первого цик­ла половина образцов показывает остаточное расширение, после второго — три четверти, что свидетельствует об изменении структуры ке­рамзита. Средняя величина усадки после пер­вого цикла 0,14 мм/м, после второго — 0,15 мм/м. Учитывая, что гравий в бетоне на­сыщается и высушивается в меньшей степени, реальные деформации керамзита в бетоне со­ставляют лишь часть этих величин. Пористые заполнители оказывают сдержи­вающее влияние на деформации усадки (и ползучести) цементного камня в бетоне, в ре­зультате чего легкий бетон имеет меньшую деформативность, чем цементный камень.

Другие важные свойства пористых заполни­телей, влияющие на качество легкого бетона— морозостойкость и стойкость против распада (силикатного и железистого), а также содер­жание водорастворимых сернистых и серно­кислых соединений. Эти показатели регламен­тированы стандартами.

Искусственные пористые заполнители, как правило, морозостойки в пределах требований стандартов. Недостаточная морозостой­кость некоторых видов заполнителей вне бетона не всегда свидетельствует о том, что легкий бетон на их основе также неморозо­стоек, особенно если речь идет о требуемом количестве циклов 25—35. Заполнители лег­ких бетонов, предназначенных для тяжелых условий эксплуатации, не всегда удовлетворя­ют требованиям по морозостойкости и потому должны тщательно исследоваться.

На теплопроводность пористых за­полнителей, как и других пористых тел, влия­ют количество и качество (размеры) воздуш­ных пор, а также влажность. Заметное влия­ние оказывает фазовый состав материала. Аномалия в коэффициенте теплопроводности связана с наличием стекло­видной фазы. Чем больше стекла, тем коэффи­циент теплопроводности для заполнителя од­ной и той же плотности ниже. С целью стиму­лирования выпуска заполнителей с лучшими теплоизоляционными свойствами для бетонов ограждающих конструкций предлагают нор­мировать содержание шлакового стекла (на­пример, для высококачественной шлаковой пемзы 60—80%) .

Искусственные пористые пески — это в ос­новном продукты дробления пористых куско­вых материалов (шлаковая пемза, аглопорит) и гранул (керамзит). Специально изготовлен­ные вспученные пески (перлитовый, керамзи­товый) пока не занимают доминирующего по­ложения.

Большое преимущество дробленых песков — возможность их производства в комплексе с производством щебня. Однако это обстоятель­ство обусловливает и существенные недостат­ки в качестве песка. Являясь попутным про­дуктом при дроблении материала на щебень, песок в ряде случаев не соответствует требуе­мому гранулометрическому составу для про­изводства легкого бетона. Очень часто песок излишне крупный, не содержит в достаточном количестве наиболее ценной для обеспечения связности и подвижности бетонной смеси фрак­ции размером менее 0,6 мм

Насыпная объемная масса пористых песков еще в меньшей степени, чем крупных заполни­телей, характеризует их истинную «легкость». Малая объемная масса песка часто достига­ется за счет не внутризерновой, а междузер­новой пористости вследствие специфики зернового состава (преобладание зерен одинакового размера). При введении в бетонную смесь та­кой песок не облегчает бетон, а лишь повы­шает его водопотребность. Очевидно, для улуч­шения качества пористого песка необходим специальный технологический передел дробле­ния материала на песок заданной грануломет­рии, а не попутное получение песка при дроб­лении на щебень.

Производство дробленого керамзитового песка, особенно при преобладании в нем круп­ных фракций, нельзя признать рациональным. Крупные фракции (размером 1,2—5 мм) дроб­леного песка мало улучшают удобоукладываемость смеси, но вызывают повышение ее объ­емной массы из-за наличия открытых пор и повышенной пустотности. Вспученный (в печах «кипящего слоя») керамзитовый песок про­изводится пока в небольшом количестве. По физико-техническим показателям он лучше дробленого песка. Прежде всего меньше его водопоглощение.

Характеристика вспученных и дробленых песков по фракциям:

50% составляет фракция 1,2—5 мм. Поэтому в легком бетоне приходится снижать расход ке­рамзитового гравия, что нерационально (заме­нять гравий песком).

С уменьшением объемной массы пористых заполнителей (насыпной и в зерне) их пори­стость и водопоглощение увеличиваются. Однако водопоглощение, отнесенное к пористости зерен, уменьшается, что указывает на увеличе­ние «закрытой» пористости у более легких ма- териалов.


Свойства легкого бетона.

Удобоукладываемость легких бетонных смесей оценивают теми же методами, которые применяют для бетон­ных смесей на плотных заполнителях.

Подбор количества воды затворения по заданному показателю удобоукладываемости затруднен тем, что последний зависит от характера применяемого пористого заполнителя.

Основы теории легких бетонов, а также общий метод подбора оптимального количества воды затворения для легкобетонной смеси разработаны Н. А. Поповым. Этот метод основан на зависимости прочности и коэффициента выхода легкого бетона от расхода воды

Кривая зависимости прочности от расхода воды имеет две ветви. Левая (восходящая) показывает, что прочность бетона при повышении расхода воды постепенно возрастает. Это объясняется увели­чением удобоукладываемости бетонной смеси и плотности бетона. Правая (нисходящая) ветвь кривой свидетельствует о том, что после достижения наибольшего уплотнения смеси (т. е. минимального коэффициента выхода) увеличение расхода воды приводит к возра­станию объема пор, образованных не связанной цементом водой, и к понижению прочности бетона. В легком бетоне отчетливо проявляется вредное влияние как недостатка, так и избытка воды затворения.

Наиболее важной (наряду с прочностью) характеристикой лег­кого бетона является объемная масса. В зависимости от объемной массы и назначения легкие бетоны подразделяют на сле­дующие группы: теплоизоля­ционные с объемной массой 500 кг/м3 и менее; конструк­ционно - теплоизоляционные (для ограждающих конструк­ций — стен, покрытий зда­ний) с объемной массой до 1400 кг/м3; конструкционные с объемной массой 1400— 1800 кг/м3. Объемная масса легкого бетона в значительной степе­ни определяется объемной массой пористого заполни­теля.

Установлены следующие проектные марки легкого бетона по прочности на сжатие: М25, 35, 50, 75, 100, 150, 200, 250, 300, 350 и 400. Легкобетонные камни для стен обычно имеют марку 25 и 35, крупные стеновые панели и блоки изготовляют из легкого бетона марок М50, 75 и 100.

Конструкционные легкие бетоны марок 150—400 получают при­меняя портландцемент марок 300—600. Крупным заполнителем слу­жит керамзитовый гравий, аглопоритовый щебень или шлаковая пемза, в качестве мелкого заполнителя часто применяют кварцевый песок. Объемная масса конструкционных легких бетонов с кварце­вым песком доходит до 1700—1800 кг/м3, но все же она на 600— 700 кг/м3 меньше, чем у тяжелого бетона, поэтому коэффициент конструктивного качества, равный отношению прочности к объем­ной массе, у легкого бетона выше примерно в 1,4 (при одинаковой прочности). В силу этого конструкционный легкий бетон особенно выгодно применять взамен тяжелого бетона в железобетонных конструкциях больших пролетов (фермы, пролетное строение мостов и т. п.), где особенно эффективно снижение собственной массы кон­струкции. Уменьшение нагрузок от собственной массы позволяет сократить расход арматурной стали на 15—30 %.

Деформативные свойства легких и тяжелых бетонов сильно раз­личаются. Легкие бетоны на пористых заполнителях более трещиностойки, так как их предельная растяжимость выше, чем равно­прочного тяжелого бетона. Однако следует учитывать и такие осо­бенности легких бетонов, как большие усадка и ползучесть по срав­нению с тяжелым бетоном.

Теплопроводность легкого бетона зависит в основном от объем­ной массы и влажности.

Увеличение влажности бетона на 1 % повышает коэффициент теп­лопроводности на 0,01—0,03 Вт/(м-К). В зависимости от объемной массы и теплопроводности толщина наружной стены из легкого бетона может быть от 22 до 50 см.

Долговечность бетона зависит от его морозостойкости. Для ограждающих конструкций обычно применяют легкие бетоны, вы­держивающие 15—35 циклов попеременного замораживания и оттаивания. Однако для стен влажных промышленных помещений, в осо­бенности в районах с суровым климатом, требуются более морозо­стойкие легкие бетоны. Требования по морозостойкости еще более повышаются, если конструкционный легкий бетон предназначен для гидротехнических сооружений, мостовых и других конструкций. В этих случаях нужен легкий бетон с марками по морозостойкости МрзбО, 75, 100, 150, 200, 300, 400 и 500.

Возможность получения легких бетонов с высокой морозостой­костью и малой водопроницаемостью значительно расширяет обла­сти их применения. Бетоны на пористых заполнителях уже успешно используют в мостостроении, в гидротехническом строительстве и даже в судостроении.

В слабоагрессивных и среднеагрессивных средах легкобетонные конструкции можно применять без специальной защиты при усло­вии, если показатель проницаемости легкого бетона не отличается от соответствующей характеристики тяжелого бетона, эксплуатируе­мого в данной агрессивной среде. Применение же легких бетонов в сильноагрессивной среде разрешается лишь после опытной про­верки.

Легкий бетон для несущих армированных конструкций должен быть плотным, т. е. иметь плотную структуру, при которой межзер­новые пустоты крупного заполнителя были бы полностью заполнены цементным раствором. В плотном легком бетоне защита арматуры от коррозии не нужна.

Водостойкость плотных легких бетонов на цементе существенно не отличается от водостойкости тяжелых бетонов. Обычно умень­шение прочности легких бетонов от их кратковременного насыщения водой не превышает 15 %. В воде легкие бетоны набухают больше, чем равнопрочные тяжелые бетоны.

Водонепроницаемость конструкционных легких бетонов высокая. По данным Г. И. Горчакова и К. М. Каца, керамзитобетон с расхо­дом цемента 300—350 кг/м3 не пропускал воду даже при давлении 2 МПа. Малая водопроницаемость плотных легких бетонов подтвер­ждается долголетней эксплуатацией гидротехнических сооружений в Армении и Грузии, а также испытанием напорных труб. Харак­терно, что со временем водонепроницаемость легких бетонов повы­шается.

Дальнейшее уменьшение объемной массы легких бетонов без ухуд­шения их основных свойств возможно путем образования в цемент­ном камне мелких замкнутых пор. Для поризации цементного камня, являющегося самой тяжелой составной частью легкого бетона, используют небольшие количества пенообразующих или газообра­зующих веществ. Мелкие и равномерно распределенные поры в це­ментном камне не понижают прочность, но уменьшают объемную массу и теплопроводность легкого бетона. Кроме того, поризация цементного камня в легком бетоне позволяет обойтись без пори­стого песка.

Легкий бетон является эффективным универсальным материалом и его применение быстро возрастает.

Однородность.

По данным С. Ф. Бугрима, В. Л. Пржецлавского, В. П. Петрова и других исследователей, изучавших качество ке­рамзита на многих предприятиях, керамзит везде неоднороден. Очевидно, это предопределено самой технологией получения керамзитового гравия, когда каждая гранула вспучивается по-разному при неоднородности сырья и не­постоянстве температурных условий в печи. В результате керамзитовый гравий — это совокупность неодинаково вспученных гранул различной плотности и прочности.

Применяя такой неоднородный заполнитель, невозможно получить однородный по качеству бетон. Чтобы конструк­ции были достаточно надежны по прочности, надо учесть минимальную статистически вероятную прочность заполнителя, а при расчете массы и теплопроводности — принять возможную максимальную его плотность. Если заполни­тель неоднороден, то расчетные характеристики бетона и эффективность его применения в конструкциях тем самым занижаются.

Для повышения однородности керамзита есть два пути. Первый состоит в совершенствовании технологии произ­водства, усреднении сырья, более тщательной его перера­ботке и грануляции, стабилизации режимов термоподго­товки, обжига и охлаждения, улучшении фракционирова­ния. В институте НИИКерамзит проведены исследования основных факторов, влияющих на однородность керамзи­тового гравия на всех этапах его производства, и разрабо­таны соответствующие рекомендации.

Второй путь — разделение готовой продукции на фрак­ции не только по крупности, но и по плотности зерен.


Обогащение.

Применительно к керамзитовому гравию термин «обо­гащение» означает разделение его на классы по плотности зерен. Более легкий будет богаче хорошо вспученными зернами, более тяжелый — богаче менее вспученными, зато более прочными зернами.

А. А. Эльконюк и другие (НИИКерамзит) установили возможность сепарации керамзитового гравия в кипящем слое без промежуточного утяжелителя. В этом случае утя­желителем служит сам керамзитовый гравий. Он непре­рывно поступает в классификационную камеру сепаратора, через решетчатое дно которой вентилятором подается по­ток воздуха. При определенной скорости подачи воздуха создается режим псевдоожижения, и керамзитовый гравий расслаивается: сравнительно тяжелые зерна опускаются вниз, а легкие сосредоточиваются в верхней части слоя, откуда и отбираются отдельно.

Если сравнить два описанных выше способа сепара­ции — с промежуточным утяжелителем и без него, то в первом случае эффективность сепарации абсолютная (в среде определенной плотности легкое зерно всплывет, а тяжелое потонет), а во втором она зависит от крупности, зернового состава, формы зерен и других факторов, не свя­занных непосредственно с плотностью. Поэтому при раз­делении без промежуточного утяжелителя в легком классе с некоторой вероятностью могут оказаться и тяжелые зер­на, в тяжелом классе — легкие. Все же, по данным А. А. Эльконюка, коэффициенты вариации насыпной плотности сепарированного легкого и тяжелого керамзита в два раза меньше коэффициента вариации исходного. При этом без промежуточного утяжелителя упрощаются технология сепарации и аппаратурное оформление процесса.

Считается, что керамзитовый гравий и другие пористые заполнители подлежат обогащению только в условиях су­хой сепарации, что их нельзя увлажнять, поскольку, на­пример, по ГОСТ 9759—76 влажность поставляемого ке­рамзитового гравия должна быть не более 2%. Однако это ограничение касается поставляемого гравия, а при исполь­зовании его можно увлажнять, как того требует технология. В технологии легких бетонов нередко рекомендуется пред­варительно увлажнять пористые заполнители, чтобы умень­шить поглощение ими воды из бетонной смеси.

В связи с этим, по мнению автора, в ряде случаев целе­сообразно проводить сепарацию керамзитового гравия в воде. Предложенный сепаратор представляет собой ванну с водой, снабженную двумя скребковыми транспортерами, один из которых убирает со дна ванны тонущий керамзит, другой — всплывающий. Керамзит, подаваемый на сепара­цию, находится в воде не более 5 с. Вода — подходящая среда для разделения керамзита по плотности зерен на два класса

Таким образом, для повышения однородности керамзита есть два пути: первый состоит в совершенствовании техно­логии производства, усреднении сырья и т. д.; второй — в разделении готовой продукции по плотности зерен.

Первый путь малоперспективен, т.к. улучшение переработки сырья, оптимизация ре­жимов термообработки и другие подобные мероприятия повысят качество керамзита, но однородность его тем не менее останется невысокой: каждая гранула вспучивается по-своему, добиться идентичности гранул невозможно, и условия их вспучивания в печи не могут быть одинаковыми. При этом осуществление мероприятий по более тщатель­ной переработке сырья, оптимизации режимов требует до­полнительных затрат и, возможно, уменьшит выход про­дукции.

Поэтому предлагается другой путь: в производстве ке­рамзита на первом этапе исходить из одного критерия — давать больше продукции при минимальных затратах, а затем уже путем сепарации готового керамзитового гравия по плотности зерен получать кондиционную продукцию разных классов по свойствам и назначению. Это реальный путь повышения качества керамзита, сочетающийся с уве­личением объема его производства и снижением себестои­мости.


Схема


3.2. Описание технологического процесса.

Сущность технологического процесса производства ке­рамзита состоит в обжиге глиняных гранул по оптимально­му режиму. Для вспучивания глиняной гранулы нужно, чтобы активное газовыделение совпало по времени с пере­ходом глины в пиропластическое состояние. Между тем в обычных условиях газообразование при обжиге глин проис­ходит в основном при более низких температурах, чем