Xreferat.com » Рефераты по технологии » Следящие системы

Следящие системы

Реферат


В данной записке содержится расчёт элементов следящей системы, а так же некоторых параметров, характеризующих всю систему в целом.

В записке присутствуют необходимые для расчётов номограммы и графики, которые были заимствованы из [1]; таблицы со справочными данными отдельных элементов следящей системы.

Объём расчётно-пояснительной записки листов плюс приложение, в котором изображена электрическая принципиальная схема разомкнутой следящей системы.


Введение


Современные системы автоматического управления представляют собой сложные комплексы взаимодействующих технических устройств и элементов, работа которых основана на различных физических принципах. Различно также их конструктивное выполнение и технические характеристики.

Несмотря на многообразие отдельных систем автоматического управления и входящих в них элементов, последние могут быть сведены к нескольким основным типам, различающимся по их назначению и взаимодействию в системе управления.

САУ должна выполнять одновременно две задачи:

  1. обеспечивать с требуемой точностью изменение выходной величины системы в соответствии с поступающей извне входной величиной, играющей роль команды. При этом необходимо преодолевать инерцию объекта управления и других элементов системы.

  2. при заданном значении входной величины система должна, по возможности, нейтрализовать действие внешних возмущений, стремящихся отклонить выходную величину системы от предписываемого ей в данный момент значения.

Целью данной работы является создание САУ, которая бы удовлетворяла поставленным задачам.


Задание на курсовую работу № 34.


Jн, Нмс2

Мн, Нм

Ωн max

рад/с2

εн max

рад/с2

δm,

град

γ,

град

Вид входного

воздействия

Критерий

устойчивости

1 2 3 4 5 6 7 8

4*10-2

4 6 80 0,35 50

Плавное

воздействие

Михайлова

В таблице использовались следующие обозначения:

Jн - момент инерции нагрузки

Мн - момент нагрузки

н max - максимальная угловая скорость нагрузки

εн max - максимальное угловое ускорение нагрузки

δm - максимальная ошибка

γ - запас устойчивости системы по фазе


Содержание


  1. Функциональная схема системы

  2. Выбор и расчёт элементов системы

выбор двигателя

расчёт передаточного числа

редуктора

выбор типа усилителя

выбор датчика рассогласования

выбор и расчёт предварительного усилителя

  1. Устойчивость разомкнутой системы

  2. Литература

  3. Приложения


Функциональная схема системы


ЗУ


УМ


Объект

управл.


Редук.


ЭД


УН






Рассматриваемая следящая система относится к числу дистанционных систем, в которых сравнение сигналов управления и обработки производится путем суммирования электрических величин. Это повышает удобство пользования системой автоматического регулирования, так как задающее устройство можно расположить в удобном для пользователя месте, а также повышает надежность системы потому, что электронную часть САУ можно расположить вдали от ОУ, который обычно находится в жестких условиях.

Система работает следующим образом. Входная и выходная величины САУ сравниваются в измерителе рассогласования. Сигнал ошибки усиливается по напряжению в УН и по мощности в УМ, а затем подается на управляющую обмотку электродвигателя, который вращаясь стремиться уменьшить сигнал рассогласования. Для получения требуемой скорости вращения в схему включен редуктор.


Выбор исполнительного двигателя.


Мощность двигателя выбираем из условия обеспечения заданного режима работы объекта управления.

Исходными данными для выбора двигателя служат следующие параметры нагрузки: момент трения Мн, момент инерции Jн, угловая скорость н и угловое ускорение Сн.

Выбор двигателя начнем с ориентировочного определения необходимой мощности на его валу, для чего можно воспользоваться формулой:

Jнεн + Мн) Ωн Вт

подставив численные значения величин, получим

Ртр=(4*10-2*80+4)*6=108 Вт

Так как требуемая мощность двигателя превышает 100 Вт то выбираем двигатель постоянного тока, который обладает хорошими регулировочными и механическими характеристиками, значительным пусковым моментом. К недостаткам двигателей постоянного тока можно отнести большой момент статического трения, искрение между коллектором и щетками, генерирование радиопомех.

Для нашей системы возьмем двигатель постоянного тока МИ-22, который имеет следующие основные характеристики:

Напряжение

В

Мощность на

валу, кВт

Ток якоря,

А

Скорость вращения

об/мин

Мощность возбуждения

Вт

Маховый момент, кг м2


Сопротивление якоря

Ом

Статический момент трения

кг см

Сопротивление обмотки возбуждения, Ом
110 0,12 1,4 1000 16 0,016 4,58 1,5 790

Так как электродвигатель обладает значительной мощностью, то для обеспечения заданных значений напряжения и тока обмотки управления, в качестве усилителя мощности выбираем электромашинный усилитель - ЭМУ.


Расчет передаточного числа редуктора.


Из условия обеспечения точности воспроизведения заданного закона движения управляющей оси определим оптимальное передаточное число редуктора.

в формуле применяются следующие обозначения:

fдв - коэффициент внутреннего демпфирования двигателя;

Jдв - момент инерции двигателя с подключенным к нему редуктором.


Коэффициент демпфирования двигателя может быть найден из формулы:

fдв=, где

Се и См - конструктивные постоянные;

(Се - скоростной коэффициент; См - коэффициент пропорциональности между током якоря и вращающим моментом Мвр двигателя).

В системе СИ Се = См и поэтому: fдв=, где

R - суммарное сопротивление якорной обмотки двигателя Rя и выходного сопротивления усилителя мощности (Rдоб).

Если бы двигатель питался от источника весьма большой мощности, например от сети, то сопротивление источника управляющего напряжения можно было бы принять равным нулю. Но так как в качестве усилителя мощности мы взяли ЭМУ, выходная мощность которого сопоставима с мощностью электродвигателя, то пренебрегать этим сопротивлением нельзя.


Rдоб


В данном случае роль Rдоб выполняет выходное сопротивление усилителя. Так как добавочное сопротивление включено последовательно с якорной обмоткой двигателя, то они суммируются. С учетом этого

R = Rя+Rдоб = Rя+Rвых

Выходное сопротивление ЭМУ

Ом,

где - степень недокомпенсации ЭМУ.

R = Rя+Rвых=4,58+13,357=17,937 Ом

В зависимости от значения R двигатель обеспечивает различные значения пускового момента. Если добавочное сопротивление в цепи якоря отсутствует, то считают, что двигатель работает на естественной характеристике.


Механическая характеристика

двигателя постоянного тока с независимым возбуждением.

Ωдв

Ωхх

γ


Мп Мвр


Естественная характеристика отличается наибольшим углом наклона к оси скоростей и наибольшим пусковым моментом.

Если Rдоб≠0, двигатель будет работать на искусственной механической характеристике.

Конструктивная постоянная Се может быть вычислена на основе номинальных паспортных данных:

Определяем коэффициент внутреннего демпфирования fдв:

fдв=


Для определения оптимального передаточного числа редуктора необходимо найти момент инерции двигателя с подключенным к нему редуктором Jдр

Jдр= Jдв + Jр, где

Jдв - момент инерции двигателя;

Jр - момент инерции редуктора, приведенный к валу двигателя.

Для мощных двигателей: Jр=0,1 Jдв

С учетом этого: Jдр= Jдв +0,1 Jдв=1,1 Jдв

Момент инерции двигателя находим из махового момента по формуле:

Jдв=,где

G - маховый момент, кг м2.

Jдр=1,1*4*10-3=4,4*10-3

Подставив найденные значения в формулу для нахождения оптимального передаточного числа редуктора, получим:

iопт=

Определим передаточное число редуктора из условия обеспечения точности воспроизведения заданного закона движения управляющей оси. Для этого найдем требуемый пусковой момент:

МП=

Минимальный пусковой момент:

МП min=2

Взяв отношение Мп к Мп min получим:


Мп





Из графика изображенного на рис.1 видно, что при МПП min =1система может воспроизвести заданный закон движения только при.

Если МПП min >1, то любое значение передаточного числа редуктора, взятое в интервале 0,8< i<1,4 (для МПП min=1,227), обеспечит воспроизведение заданного закона движения, причем при больших значениях i получаются меньшие значения электромеханической постоянной времени системы. С учетом сказанного возьмем i/iопт=1,2, при этом передаточное число редуктора

i = iопт 1,2= 3,64*1,2=4,368 ≈ 4

С учетом найденных значений произведем проверку двигателя по максимальной скорости вращения, которая должна удовлетворять условию:

Ωдв max ≤ (1.2 - 1.3) Ωдв ном, где

дв max = ΩН max i

дв max = 6*4=24 рад/с

24 ≤ 1,2*104,72= 125,66


Расчет кинематики редуктора.

Для этого выберем число пар зацепления по номограмме, изображенной на рис.2.












Взяв две пары зацеплений определим передаточное число каждой пары. Для получения минимальной инерционности редуктора передаточное число каждой последующей пары должно быть связано с передаточным числом предыдущей пары соотношением:

in+1=

Для того, чтобы получить минимальный момент инерции редуктора Jp, приведенного к валу двигателя, следует учитывать тот факт, что инерционность ближайших к двигателю вносит наибольший вклад в Jp. В связи с этим размеры шестерни, непосредственно связанной с валом двигателя следует выбирать по возможности меньшими. По этой причине передаточное число первой пары не должно превышать 2 - 3.

С учетом вышесказанного передаточное число первой пары примем i1=1,8


Следовательно: i2 =


Так как номограммы построены в предположении, что диаметры первой шестерни и третьей шестерни одинаковы, кинематическую схему редуктора можно представить следующим образом:






Выбор типа усилителя и расчет его коэффициента усиления по заданной мощности.


В связи с тем, что в системе применяется двигатель постоянного тока мощностью свыше 100 Вт, в качестве усилителя мощности (УМ) целесообразнее применить электромашинный усилитель (ЭМУ).

Для обеспечения нормальной работы двигателя в качестве УМ возьмем ЭМУ - 3А, который обладает следующими техническими характеристиками:

Параметры генератора Параметры двигателя
Мощность, Вт Скорость вращения, об/мин. Напряжение, В Сила тока, А

КПД


Обмотки управления Мощность, Вт КПД Напряжение, В Род тока питающего приводной двигатель
Число обмоток Входная мощность, Вт Коэффициент усиления по мощности Ток управления, мА
0,32 2850 115 1,82 0,6 До 4 0,4 500 11 0,455 0,71 220

3х


Условие Iгн /Iя ≥ 1 выполняется

Iгн - номинальный ток ЭМУ

Iя - ток якоря двигателя

Iгн /Iя = 1,82/1,4=1,3 >1

Для определения тока управления предварительного усилителя воспользуемся характеристикой холостого хода ЭМУ, приведенной на рис.3





Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: