Xreferat.com » Рефераты по технологии » Подготовка нефти и газа к транспорту

Подготовка нефти и газа к транспорту

установки комплексной теплохимической подготовки нефти.



Рис. Установка комплексной теплохимической подготовки нефти.


Нефть из скважины после групповых замерных установок по коллектору подается в концевую совмещенную сепарационную установку КССУ 2, в которую через смеситель 1 подается горячая вода из отстойника 6, содержащая отработанный деэмульгатор. Под действием тепла пластовой воды и остатков деэмульгатора, поступающих из отстойника 6 в КССУ 2, происходит частичное разделение эмульсии на нефть, воду и газ. Отделившаяся вода подается в нефтеловушки 20, а выделившийся газ поступает на газобензиновый завод. Нефть из КССУ 2 вместе с оставшейся водой насосом 3 прогоняется через теплообменники 4 и пароподогреватели 5, затем нагретая нефть поступает в отстойник 6 для окончательного отделения нефти от воды. Отделенная вода уносит с собой основное количество солей из нефти. Для более полного обессоливания нефть из отстойника 6 направляется на смешение с горячей пресной водой, которая подается насосом 17 с предварительным подогревом пароподогревателем 15 и обескислороживанием в емкости 16. После тщательного перемешивания пресной воды с нефтью, содержащей соли, эмульсия направляется в отстойник 7, где доводится до требуемой кондиции по содержанию солей. После обессоливания и отделения воды нефть при необходимости может быть направлена из отстойника 7 на дополнительное обессоливание и обезвоживание в электродегидратор 8, а если содержание воды и солей в пределах нормы, то нефть, минуя электродегидратор 8, подается прямо в вакуумный сепаратор 9. Вакуумные компрессоры 12 забирают из сепаратора 9 газ, из которого при прохождении холодильника 10 и гидроциклонного сепаратора 11 выделяется основное количество легких углеводородов. Конденсат из сепаратора 11 отправляется на газобензиновый завод, а газ направляется на специальные установки для полной деэтанизации. Перед теплообменником 4 в нефть вводится деэмульгатор, воздействующий на поверхностные свойства пограничных слоев двух фаз эмульсии. Деэмульгатор также вводится вместе с подачей пресной воды перед отстойником 7.

Дайной системой предусмотрена очистка сточных вод с последующей подачей их на нагнетательные скважины для закачки в пласт.


ОЧИСТКА ГАЗА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ


К механическим примесям относятся частицы породы, выносимые газовым потоком из скважины, строительный шлак, оставшийся после окончания строительства промысловых газосборных сетей и магистральных трубопроводов, продукты коррозии и эрозии внутренних поверхностей и жидкие включения конденсата и воды.

Согласно техническим требованиям на природные и нефтяные газы содержание жидкой взвеси в транспортируемом газе не должно превышать 25—50 г. на 1000 м3 газа. Еще более жесткие требования необходимо предъявлять к содержанию твердой взвеси (не более 0,05мг/м3), которая способствует эрозионному износу технологического оборудования газопроводов. Так, при содержании 5—7 мг/м3 твердой взвеси к.п.д. трубопроводов уменьшается на 3—5% в течение двух месяцев эксплуатации, а при запыленности более чем ЗОмг/м3 трубопровод выходит из строя через несколько часов из-за полного эрозионно-ударного износа.

По принципу работы аппараты для очистки газа от механических примесей подразделяются на:

  • работающие по принципу «сухого» отделения пыли. В таких аппаратах отделение пыли происходит в основном с использованием сил гравитации и инерции. К ним относятся циклонные пылеуловители, гравитационные сепараторы, различные фильтры;

  • работающие по принципу «мокрого» улавливания пыли. В этом случае удаляемая из газа взвесь смачивается промывочной жидкостью, которая отделяется от газового потока, выводится из аппарата для регенерации и очистки и затем возвращается в аппарат. К ним относятся масляные пылеуловители, шаровые скрубберы и т.д.;

  • использующие принцип электроосаждения. Данные аппараты почти не применяются для очистки природного газа.

Наиболее широко используются аппараты «мокрого» и «сухого» пылеулавливания. Очистка газа по пути следования его от месторождения до потребителя производится в несколько ступеней. Для ограничения выноса из месторождения породы призабойную зону оборудуют фильтром.

Вторую ступень очистки газ проходит на промысле в наземных сепараторах, в которых сепарируется жидкость (вода и конденсат) и газ очищается от частиц породы и пыли. Промысловые очистные аппараты работают, используя свойства выпадения взвеси под действием силы тяжести при уменьшении скорости потока газа или используя действие центробежных сил при специальной закрутке потока. Поэтому промысловые аппараты очистки делятся на гравитационные и циклонные. Гравитационные аппараты бывают вертикальные и горизонтальные. Вертикальные гравитационные аппараты рекомендуются для сепарации газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очистки и дренажа.

Вертикальные сепараторы изготовляют диаметром 400—1650мм, горизонтальные — диаметром 400—1500мм при максимальном давлении 16 МПа. При оптимальной скорости эффективность сепарации составляет до 80%.

Третья ступень очистки газа происходит на линейной части газопровода и компрессорных станциях. На линейной части устанавливают конденсатосборники, так как в результате несовершенной сепарации на промысле газ всегда имеет жидкую фазу. Наибольшее распространение получили конденсатосборники типа «расширительная камера» (см. рис.). Принцип их работы основан на выпадении из потока газа капелек жидкости под действием силы тяжести из-за снижения скорости газа при увеличении диаметра трубопровода. Существенным недостатком при эксплуатации газопроводов с системой «расширительных камер» являются затруднения, связанные с пропуском устройств для очистки внутренней полости трубопровода.


Рис. Конденсатосборник типа «расширительная камера».


Вертикальный масляный пылеуловитель представляет собой вертикальный стальной цилиндр со сферическим днищем, рассчитанным на рабочее давление в газопроводе. Диаметр пылеуловителя 1080—2400 мм. Внутри пылеуловителя находятся устройства, обеспечивающие контактирование масла с газом и отделение частиц масла от газа при выходе его из аппарата. Пропускная способность масляного пылеуловителя может быть рассчитана по формуле

,

где Q — максимальная пропускная способность при стандартных условиях, м3/сут; D — внутренний диаметр пылеуловителя, м; p — давление газа, МПа; рж и рг— плотность смачивающей жидкости и газа при рабочих условиях, кг/м3, Т — температура газа, К.

Чтобы обеспечить нормальную работу пылеуловителей, необходимо поддерживать постоянный уровень масла. Пропускная способность вертикальных масляных пылеуловителей при заданном давлении ограничивается скоростью потока газа в контактных трубках, которая не должна превосходить 1—3 м/с.

Преимущество вертикального масляного пылеуловителя по сравнению с горизонтальным пылеуловителем заключается в высокой степени очистки (общий коэффициент очистки достигает 97—98%). Недостатками его являются большая металлоемкость, наличие жидкости и ее унос (допускается не более 25 г. на 1000 м3 газа), большое гидравлическое сопротивление (0,35—0,5 кгс/см2), чувствительность к изменениям уровня жидкости. В горизонтальном пылеуловителе используется барботажный способ промывки газа вместо промывки в контактных трубках. Поток газа, поступающего в аппарат через два симметричных патрубка, меняет направление на 90° перед отбойным козырьком. Далее газ поступает в регистры с щелевидными отверстиями для равномерного распределения под горизонтальным стальным листом с перфорацией, который делит пылеуловитель на две части.

Циклонный пылеуловитель представляет собой аппарат цилиндрической формы с встроенными в него циклонами. Газ поступает через боковой верхний входной патрубок в распределитель, к которому приварены звездообразно расположенные циклоны, закрепленные неподвижно на нижней решетке. Отсепарированная жидкость и твердые частицы по дренажному конусу циклона попадают в грязевик.


УСЛОВИЯ ОБРАЗОВАНИЯ ГИДРАТОВ И БОРЬБА С НИМИ


Влажный газ — смесь сухого газа и водяного пара. Поскольку молярная концентрация компонентов в паровой (газовой) смеси соответствует их парциальному давлению, то молярное содержание водяного пара в газе можно выразить формулой

,

где WB — содержание водяных паров, моль/моль или м33; р — относительная влажность газа; р — давление насыщенных паров воды при данной температуре, Па; Р — полное давление газа, Па.

Относительной влажностью газа называется отношение количества паров воды, фактически находящихся в газе при данных t и P, к количеству паров, способных удержаться в газе в состоянии насыщения при тех же условиях.

Температура, при которой газ становится насыщенным при данным давлении и количестве водяного пара, называется точкой росы газа.


Гидраты природных газов


Гидраты — кристаллические вещества, образованные ассоциированными молекулами углеводородов и воды; они имеют кристаллическую структуру. Свойства гидратов газов позволяют рассматривать их как твердые растворы. Исследования показали, что содержание водяного пара в газообразной фазе в системе «газ — гидрат» меньше, чем его содержание в системе «газ — вода». Возникновение гидрата обусловлено определенными давлением и температурой при насыщении газа парами воды. Гидраты распадаются после того, как упругость паров воды будет ниже парциальной упругости паров исследуемого гидрата. Гидраты природных газов внешне похожи на мокрый спрессованный снег, переходящий в лед. Скапливаясь в газопроводах, они могут вызвать частичную или полную их закупорку и тем самым нарушить нормальный режим работы магистрали. Составы гидратов выражаются формулами: CH4*6H2O, C2H6*6H2O, C3H8*17H2O и др.

В газопроводе очень важно определить место образования гидратов. Для этого необходимо знать состав и начальную влажность газа, а также его давления и температуру в газопроводе.

При понижении давления в газопроводе гидраты могут образовываться при все более низких температурах. Когда давление станет ниже некоторого предела, гидраты смогут образовываться при обычной температуре газа в газопроводе - возникает опасность гидратной пробки. После выпадения газ недонасыщен парами воды, что эквивалентно снижению его точки росы. При дальнейшем движении газа может возникнуть еще одна гидратная пробка, соответствующая этой новой точке.


Методы предупреждения образования гидратов


1. Предупреждение образования гидратов методом подогрева газа заключается в том, что при сохранении давления в газопроводе температура газа поддерживается выше равновесной температуры образования гидратов. В условиях транспорта газа по магистральному газопроводу этот метод неприменим, так как связан с большими затратами энергии. Как показывают расчеты, при больших объемах транспортируемого газа может оказаться экономически целесообразно охлаждать его (с учетом увеличения затрат на более глубокую осушку газа), поскольку это позволяет заметно увеличить пропускную способность газопроводов, особенно газопроводов с большим числом компрессорных станций. Метод подогрева применяется на газораспределительных станциях, где при больших перепадах давления вследствие дроссельного эффекта температура газа может значительно снижаться, в результате чего обмерзают редуцирующие клапаны, краны, диафрагмы и др.

2. Предупреждение образования гидратов методом снижения давления заключается в том, что при сохранении температуры в газопроводе снижается давление ниже равновесного давления образования гидратов. Этот метод возможен и при ликвидации уже образовавшихся гидратов. Ликвидация гидратных пробок осуществляется путем выпуска газа в атмосферу через продувочные свечи. После снижения давления необходимо некоторое время для разложения гидратов. Очевидно, что этот метод пригоден только для ликвидации гидратных пробок при положительных температурах. Иначе гидратная пробка перейдет в ледяную. Поскольку минимальная температура газа в магистральных газопроводе близка к нулю, а равновесное давление при этом для природного газа находится в пределах 1,0—1,5 МПа, применение данного метода в магистральных газопроводах оказывается неэффективным. Метод снижения давления применяется в аварийных случаях для разложения гидратов в газопроводе путем кратковременного уменьшения давления.

3. Ингибиторы, введенные в насыщенный водяными парами поток природного газа, частично поглощают водяные пары и переводят их вместе со свободной водой в раствор, который совсем не образует гидратов или образует их при температурах более низких, чем температура гидратообразования в случае наличия чистой воды. В качестве ингибиторов применяют метанол CH3OH, растворы этиленгликоля (ЭГ), диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция СаСl2.


Осушка газа


При больших объемах транспортируемого газа его осушка является наиболее эффективным и экономичным способом предупреждения образования кристаллогидратов в магистральном газопроводе. Существующие способы осушки при промысловой подготовке газа к транспорту подразделяются на две основные группы: абсорбция и адсорбция и охлаждение газового потока.

В результате осушки газа точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировании газа.


СОРБЦИОННЫЕ СПОСОБЫ ОСУШКИ ГАЗА


Жидкие сорбенты, применяемые для осушки природных и нефтяных газов, должны иметь высокую растворимость в воде, низкую стоимость, хорошую антикоррозионность, стабильность по отношению к газовым компонентам и при регенерации; простоту регенерации, малую вязкость и т.д.

Большинству этих требований наилучшим образом отвечают ДЭГ и ТЭГ и в меньшей степени ЭГ.

Этиленгликоль (СН2ОН—СН2ОН) — простейший двухатомный спирт, используется в основном как ингибитор, не применяется для осушки

Диэтиленгликоль (СН2ОН-СН2-О-СН2-СН2ОН) в химически чистом виде - бесцветная жидкость. Как показали эксперименты в лабораторных и промышленных условиях, максимальное понижение точки росы газа при осушке ДЭГ обычно не превышает 30—35° С, что довольно часто оказывается недостаточным. В связи с разработкой более глубоких газовых месторождений, температура газа которых значительная и в летнее время почти не понижается в коммуникациях до газоосушительных установок, потребовался более сильный влагопоглотитель.

Триэтиленгликоль (СН2ОН-СН2-О-СН2- О-СН2-СН2ОН) получают соединением трех молекул ЭГ с образованием воды.

Гликоли хорошо озирают влагу из газов в большом интервале температур.

При сравнении ДЭГ и ТЭГ необходимо иметь в виду, что ДЭГ более дешевый. Однако при использовании ТЭГ можно получить большее снижение точки росы газа (на 45—50°). Потери ТЭГ при регенерации значительно меньше, чем потери ДЭГ вследствие более низкой упругости паров.

На рис. приведена схема установки осушки газа жидкими сорбентами, получившая широкое распространение на газовых месторождениях.


Поступающий газ проходит сепаратор 1, где осаждается капельная влага, и поступает в нижнюю часть абсорбера 2, Сначала газ идет в нижнюю скрубберную секцию 3, в которой дополнительно очищается от взвешенных капель влаги. Затем газ последовательно проходит через тарелки 4, поднимаясь вверх. Навстречу потоку газа протекает 95-97% раствор ДЭГ, вводимый в абсорбер насосом 10. Осушенный газ проходит через верхнюю скрубберную секцию, где освобождается от захваченных капель раствора, и направляется в газопровод. Насыщенный раствор, содержащий 6—8% влаги, поступает в теплообменник 7, в котором нагревается встречным потоком регенерированного раствора, а далее проходит через выветриватель 8, где из него выделяется растворенный газ, который идет на собственные нужды. Из выветривателя насыщенный ДЭГ насосом 9 закачивается в выпарную колонну 12, где осуществляется регенерация раствора. Водяной пар из десорбера 12 поступает в конденсатор 16, где основная часть пара конденсируется и собирается в сепараторе 15. Отсюда газ отсасывается вакуумным насосом 14 и направляется на сжигание. Регенерированный раствор ДЭГ насосом 10 прокачивается через теплообменник 7 и холодильник 6, где его температура снижается примерно до 30°, и вновь поступает на верхнюю тарелку абсорбера. На этом круговой цикл сжижения раствора заканчивается.

Экономичность работы абсорбционных установок в значительной степени зависит от потерь сорбента. Для их снижения в первую очередь необходимо строго поддерживать расчетный температурный режим десорбера, тщательно сепарировать газ и водяной пар и по возможности исключить пенообразование при контакте газа с абсорбентом за счет специальных добавок.


Осушка газа твердыми поглотителями


В качестве твердых поглотителей влаги в газовой промышленности широко применяются активированная окись алюминия и боксит, который на 50—60% состоит из Al2O3. Поглотительная способность боксита 4,0—6,5% от собственной массы.

Преимущества метода: низкая точка росы осушенного газа (до —65° С), простота регенерации поглотителя, компактность, несложность и низкая стоимость установки.


Осушка газа молекулярными ситами


Для глубокой осушки применяют молекулярные сита, так называемые цеолиты. Цеолиты состоят из кислорода, алюминия, кремния и щелочноземельных металлов и представляют собой сложные неорганические полимеры с кристаллической структурой. Форма кристалла цеолита — куб, на каждой из шести сторон его имеются щели, через которые влага проникает во внутреннее пространство. Каждый цеолит имеет свой размер щелей, образованных атомами кислорода. Благодаря этому

цеолиты способны резко избирательно сорбировать в основном мелкие молекулы, т. е. при адсорбции происходит как бы отсеивание более мелких от более крупных молекул. Мелкие молекулы проникают во внутреннее пространство кристалла и застревают в нем, а крупные молекулы не проходят и, следовательно, не будут адсорбироваться.

Цеолиты, применяемые в виде порошка или гранул размером до 3 мм, обладают высокой пористостью (до 50%) и огромной поверхностью пор. Их активность достигает 14—16 г. на 100 г. цеолитов при парциальном давлении 0,4 мм рт.ст.

Для регенерации молекулярных сит используют сухой газ, нагретый до 200-300° С, который пропускают через слой цеолита в направлении, обратном движению газа при осушке.

Цеолиты выдерживают до 5000 циклов, теряя при этом около 30% своей поглотительной способности.


ОСУШКА ГАЗА ОХЛАЖДЕНИЕМ


Охлаждение широко применяется для осушки и выделения конденсата и газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также при получении индивидуальных компонентов газа сжижении газов и т.д.

Газ можно охлаждать путем расширения, когда необходимо снижать его давление, а также пропуская через холодильные установки. В условиях Крайнего Севера для охлаждения газа можно использовать низкую температуру окружающего воздуха (в зимнее время).

Процесс расширения с целью понижения температуры осуществляется двумя способами — дросселированием без совершения внешней работы (изоэнтальпийный процесс) или адиабатическим расширением с отдачей внешней работы (изоэнтропийный процесс).

В тех случаях, когда давления газа на входе в установки низкотемпературной сепарации недостаточно для его охлаждения расширением, устанавливают холодильные установки, заменяющие или дополняющие узел расширения. Необходимая температура сепарации может обеспечиваться за счет установки дополнительных теплообменников-рекуператоров и холодильников. Для предупреждения гидратообразования перед теплообменником в поток сырого газа впрыскивается гликоль. Предусмотрен также ввод ингибитора.

Рассматривая рациональную область применения указанных способов осушки и извлечения конденсата из природных и попутных газов, необходимо отметить ,что осушку весьма тощих газов (чисто газовых месторождений) целесообразно вести с применением диэтиленгликоля и триэтиленгликоля, активированного боксита и цеолитов. Применять другие методы нерентабельно. Если же требуется только частичное удаление влаги из газа (получение точек росы не ниже —10° С), лучше применять гликоли. Ддя более глубокой осушки, а также при необходимости получения отдельных фракций желательно осушку вести активированным бокситом или цеолитом. Осушку и извлечение конденсата из газа газоконденсатных месторождений, в газах которых находитсядостаточно много конденсата, как правило, наиболее выгодно производить на установках низкотемпературной сепарации. При этом эффективность использования низкотемпературной сепарации газа зависит от начального давления и темпов его падения.


ОДОРИЗАЦИЯ ГАЗА


Природный газ, очищенный от сероводорода, не имеет ни цвета, ни запаха. Поэтому обнаружить утачку газа довольно трудно. Чтобы обеспечить безопасность транспорта и использования газа, его одорируют, т. е. придают ему резкий и неприятный запах. Для этой цели в газ вводят специальные компоненты (одоранты). Одоранты и продукты их сгорания должны быть физиологически безвредными, достаточно летучими, не должны вызывать коррозию, химически взаимодействовать с газом, поглощаться водой или углеводородным конденсатом, сильно сорбироваться почвой кяи предметами, находящимися в помещениях. Одоранты должны быть недорогими. Этим требованиям в наибольшей степени удовлетворяет этилмеркаптан C2H5SH.


ОЧИСТКА ГАЗА ОТ СЕРОВОДОРОДА И УГЛЕКИСЛОГО ГАЗА


Сероводород часто является примесью природного газа. Он горюч, хорошо растворяется в воде. Сам по себе газ и продукт его сгорания сернистый ангидрид — ядовиты. Кроме того, сероводород и сернистые соединения вызывают коррозию стальных труб, резервуаров, оборудования трубопроводов и др. Присутствие сероводорода в газе ускоряет гидратообразование. При использовании газа для бытовых нужд содержание сероводорода в нем не должно превышать 0,02 г/м3 при 0°С и 760 мм.рт.ст.

По технико-экономическим условиям недопустимо также большое содержание в газе углекислого газа СО2 (оно не должно превышать 2%). Очистку газа от СО2 можно производить под давлением водой, в которой углекислый газ хорошо растворяется. Всего применяется около 20 различных процессов совместной очистки газов от Н2S и СО2. Обычно используют два технологических процесса — адсорбцию твердым веществом и абсорбцию жидкостью. В адсорбционных процессах сероводород извлекается из газа путем концентрации его на поверхности твердого материала. При абсорбции жидкостью происходит переход сероводорода из газовой в жидкую фазу. Адсорбированный сероводород растворяется в жидкости. Удаление его является обращенным процессом, зависящим от температуры.

В качестве адсорбента в сухих провесах используют окись железа и активированный уголь. Наиболее распространен способ извлечения сероводорода гидратом окиси железа. Его осуществляют при сравнительно высоком содержании Н2S в газе. В результате извлечения сероводорода его содержание снижается до 0,02г/см3.

«Мокрым» способом одновременной очистки газа от сероводорода и углекислого газа при сравнительно низкой стоимости является процесс с использованием аминов: моноэтаноламина, диэтаноламина и динизопропанамина.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: