Xreferat.com » Рефераты по транспорту » Описание судового дизеля ДКРН 80/70

Описание судового дизеля ДКРН 80/70

СОДЕРЖАНИЕ


Задание на курсовой проект


  1. Введение

  2. Техническая характеристика двигателя

  3. Особенности конструкции двигателя

1. Остов двигателя

2. Кривошипно-шатунный механизм

3. Механизм распределения

4. Система подачи воздуха в цилиндры

  1. Система выпуска отработавших газов

  2. Топливная система

  3. Масляная система

  4. Система охлаждения

  5. Система пуска, реверса и управления

  6. Контрольно-измерительные приборы и устройства аварийно-предупредительной сигнализации на двигателе

  7. Автоматические и защитные устройства на двигателе

  1. Тепловой расчет двигателя

  2. Динамический расчет двигателя

  3. Заключение

Использованная литература

1. Введение


Двигатели внутреннего сгорания (ДВС) получили широкое применение в промышленности, в сельском хозяйстве и на транс­порте.

Зарождение идеи создания ДВС относится к концу XVII в. В 1680 г. Гюйгенс предложил построить двигатель, работающий за счет взрывов в цилиндре заряда пороха. В дальнейшем раз­личные варианты двигателей предлагались Р. Стритом, В. Рай­том, В. Барнетом, Ленуаром и Бо де Роша, который первым раз­работал четырехтактный цикл.

В 1879 г. инженер-механик русского флота И. С. Костович сконструировал первый в мире легкий бензиновый двигатель (предназначался для дирижабля) мощностью 80 л. с. (58,8 кВт) С удельной массой всего 3 кг/л. с. (4,08 кг/кВт). Еще через 18 лет на заводах Германии строили для дирижаблей двигатели, имевшие в 8 раз большую удельную массу.

В 1892 г. Рудольф Дизель получил патент на двигатель, в котором топливо должно было воспламеняться от предваритель­но сжимаемого до высоких температур воздуха. Первая работо­способная конструкция двигателя была создана им в 1896— 1897 гг. Двигатель работал на керосине, распыливаемом форсун­кой с помощью подаваемого в нее сжатого воздуха (такой метод распыливания получил наименование компрессорного). Мощ­ность двигателя составляла 20 л. с. (14,7 кВт) при расходе топ­лива 0,24 кг/(л. с.-ч) [0,327 кг/(кВт-ч)], что соответствует КПД е=0,26.

В 1899 г. петербургским механическим заводом "Л. Нобель" (сейчас завод «Русский дизель») по патенту Р. Дизеля был по­строен первый в России двигатель, который работал па более дешевой, чем керосин, сырой нефти и расходовал топлива 0,2 кг/(л. с-ч) [0,298 кг/(кВт-ч)].

В дальнейшем развитии и внедрении дизелей на водном тран­спорте большую роль сыграли русские инженеры. В 1903 г. была практически осуществлена первая в мире судовая дизель-элект­рическая установка на наливной барже «Вандал» с тремя четы­рехтактными 120-сильными двигателями.

В 1907 г. Коломенский завод построил первый в мире колес­ный буксир «Мысль» с двигателем мощностью 300 э. л. с. (220,8 кВт)/и зубчатой передачей, снабженной муфтой Р. А. Корейво для заднего хода и маневрирования. Первые в мире ревер­сивные двигатели были установлены в 1908 г. на подводной лод­ке «Минога». Первым морским теплоходом был танкер «Дело» во­доизмещением 6000 т, построенный также в 1908 г. В постройке теплоходов другие государства отставали от России. На съезде двигателестроителей (Петербург, 1910 г.) Р. Дизель признал ве­дущую роль русского судового двигателестроения. Только в 1911 г. за рубежом (в Дании) был построен первый крупный теп­лоход «Зеландия». В дальнейшем высокоэкономичные дизели ста­ли вытеснять широко применявшуюся на морских судах паровую поршневую машину. Последующее совершенствование двигателей привело к увеличению их коэффициента полезного действия (КПД) до 42—45%. В настоящее время из всех тепловых двигате­лей ДВС является наиболее экономичным. Кроме того, ДВС обладает относительно малыми габаритами и массой, боль­шим моторесурсом (60—100 тыс. ч), прост в эксплуатации и на­дежен, что предопределило преимущественное применение дизе­лей на морских судах.

Для современного периода в развитии морского транспорта характерны: интенсивный рост дедвейта наливных судов и рудо­возов; увеличение скоростей сухогрузных судов для генеральных грузов до 20—25 уз при росте их водоизмещения; появление су­хогрузных судов нового типа (контейнеровозов, судов с горизон­тальной погрузкой, судов для перевозки груженых барж и т. п.), скорости хода которых достигают 25—30 уз.

До недавнего времени судовые энергетические установки мощ­ностью свыше 15 тыс. л. с. (11 тыс. кВт) в связи с отсутствием мощных дизелей комплектовались паровыми турбинами. Под вли­янием растущей потребности в более мощных судовых двигателях мощность двухтактных мало­оборотных крейцкопфных двига­телей доведена до 48 тыс. э. л. с. (35,3 тыс. кВт) в одном агрега­те.Сейчас малооборот­ные дизели успешно конкуриру­ют с паровыми турбинами в установках судов дедвейтом до 250 тыс. т. Отечественная промышлен­ность выпускает двигатели раз­личного назначения; для морских судов дизелестроительные заводы строят двигатели типа ДКРН 50/110, 62/140, 74/160, 84/180; ДР 30/50, ЧН 25/34 и др.

Успехи двигателестроения и в первую очередь применение над­дува, а также новых прогрессивных конструктивных решений и высококачественных материалов, достижения в области техноло­гии производства и др. способствовали созданию ряда новых ти­пов среднеоборотных (n = 400—600 об/мин.) тронковых дизелей, предназначенных в основном для передачи мощности греб­ному винту через редукторную передачу (заметим, что ма­лооборотные двигатели используются для прямой пере­дачи).

Среднеоборотные двигатели перед малооборотными имеют следующие преимущества: меньшие массу, габаритные размеры и стоимость; возможность выбрать такую частоту вращения греб­ного винта, которая обеспечивает более высокие значения пропульсивного коэффициента; возможность комплектовать установ­ку несколькими однотипными двигателями; возможность привода от главных двигателей генераторов тока и иных вспомогательных механизмов и др.

Среднеоборотные двигатели строят в рядном и V-образном исполнении мощностью от 2700 до 24 000 э. л с. (2000 — 17 700 кВт).

Наряду с созданием новых двигателей, повышением их мощ­ности и совершенствованием конструкции большое значение при­дается увеличению долговечности двигателей, снижению объема и трудоемкости работ по их техническому обслуживанию.

II. Техническая характеристика


Дизель

ДКРН 80/170

Цилиндровая мощность, э.л.с…………………….1250

Скорость вращения, об/мин……………………….115

Диаметр цилиндра, мы.............................................800

Ход поршня, м .....................................................1700

Среднее индикаторное давление, кг/см2…………..7,9

Среднее эффективное давление, кг/см2 ................7,1

Механический к.п.д…………………………………0,90

Давление продувочного воздуха, ати……………..0,46

Давление в конце сжатия, кг/см2…………………...45

Максимальное давление сгорания, кг/см2………….50

Удельный расход топлива, г/э.л.с.ч ...........................158

  1. ОСОБЕННОСТИ КОНСТРУКЦИИ ДВИГАТЕЛЯ.


    1. Остов двигателя.


Остов двигателя состоит из следующих основных частей: фунда­ментной рамы, станины, цилиндров и цилиндровых крышек. Все части остова образуют единую жесткую конструкцию, обеспечиваю­щую отсутствие деформаций при работе двигателя от действия сил давления газов и сил инерции движущихся частей. Для надежной работы двигателя необходимо, чтобы ось коленчатого вала была прямолинейна, а ось движения (поршень, шток, шатун) —перпенди­кулярна оси вала. Эти требования выполняются при обработке де­талей и сборке двигателя. Недостаточная жесткость остова двига­теля может привести к появлению в частях остова деформаций, вызывающих искривление оси коленчатого вала, а также изменить взаимное расположение осей вала и деталей движения, что в свою очередь влечет за собой появление добавочных напряжений у колен­чатого вала и нагрев подшипников. Жесткость конструкции остова создается за счет выбора материала для изготовления его частей, конструктивного оформления деталей остова, проверки выбранных размеров расчетом на прочность и способа соединения деталей остова между собой.

В судовых дизелях применяют различные схемы конструктивного оформления деталей остова. Рассмотрим три основные схемы.

1. Остов креицкопфного двигателя (рис. 1) состоит из фун­даментной рамы 4, станины, выполненной из отдельных А-образных стоек 2, и цилиндров 1, закрытых крышками. Рама, станина и ци­линдры связаны длинными анкерными связями 3. Увеличенное сечение высоких поперечных и продольных балок фундаментной рамы обеспечивает жесткость конструкции.

Фундаментная рама 2, станина с А-образными колоннами 6 и проставка 23 из двух секций — стальные, сварные.

Отсеки картера с боковых сторон двигателя закрыты сталь­ными съемными щитами со смотровыми люками и предохрани­тельными клапанами.

Двигатель имеет два распределительных вала. Верхний вал 39 со стопорным цилиндром 38 служит для привода вы­пускных клапанов 17, а нижний вал 40 — для привода топлив­ных насосов 37 высокого давления. Оба распределительных ва­ла соединены с коленчатым валом 33 при помощи двойной цепной передачи, заключенной в специальном отсеке 44.

Сварной фундамент упорного подшипника 41 связан с тор­цом фундамента двигателя.


Рис. 1. Остов двигателя


Валоповоротное устройство установлено на ста­нине, прикрепленной к судовому фундаменту. Зубчатое колесо42 на упорном зале 43 приводится в движение через двойную чер­вячную передачу от электродвигателя 4 с дистанционным уп­равлением.

Блок цилиндров (лист 96) состоит из отдельных руба­шек цилиндров 13, соединенных болтами 9 в две секции, между котороми размещен приводной отсек. Рубашки цилиндров, вы­полненные из перлитного чугуна, имеют люки 10 для осмотра полостей охлаждения. Охлаждающая вода подводится к ци­линдру в нижней части и отводится в крышку 20 по двум чу­гунным патрубкам 22.

Простановка 25 между блоком цилиндров и станиной, являющаяся дополнительной емкостью ресивера 18, выполнена из двух секций. Каждая секция разбита на отсеки по числу цилиндров переборками с отверстиями А сообщающими отсеки ксждой секции с общей полостью.

Диафрагма 28 с отверстием В для сальника штока, отделяю­щая подпоршневые полости от картера, имеет в каждом отсеке по два патрубка для удаления загрязнений. Осмотр подпоршне-вых полостей, осуществляется через съемные щиты 27. В тру­бе 19 размещается телескопическое устройство охлаждения поршня.

Сальникштока (узел Т) с чугунным корпусом 1 выпол­нен из двух частей, соединенных между собой болтами. К диа­фрагме 28 сальник крепится шпильками.

Два чугунных уплотнительных кольца 2 с S-образным зам­ком прижимаются к штоку наружными кольцевыми пружина­ми 3.

Два чугунных маслосъемных кольца 6 и 11 из трех сегмен­тов прижимаются к штоку спиральными пружинами 12.

Отвод масла от верхнего кольца осуществляется через ра­диальные сверления по штуцеру, ввернутому в сверление К. Смазка для штока от лубрикатора поступает по отверстию V. Короткие анкерные связи 16 из легированной стали, размещенные в плоскостях разъемов рубашек цилиндра, соеди­няют цилиндры с верхней литой частью стоек картера.

Втулка цилиндра 14 изготовлена из перлитного чугуна, легированного хромом, никелем и ванадием. Она имеет двад­цать четыре продувочных окна с тангенциальным размещением их в горизонтальной плоскости. При высоте окон в 165 мм сум­марное проходное сечение составляет 1488 мм.

Уплотнение втулки в рубашке цилиндра и проставив произ­водится резиновыми кольцами 15 и 23, которые обжимаются втулками 17 и 24, состоящими из двух половин.

Смазка к втулке подается через шесть штуцеров 26 с шари­ковыми невозвратными клапанами, нагруженными пружинами.

Крышка 29 из молибденовой стали уплотняется по торцу втулки притиркой, а по конической поверхности — стальным кольцом 8 из двух половин. Конические поверхности крышки и втулки для защиты от коррозии обмазываются пастой на гра фитной основе («Апексиор»). Утопленное исполнение крышки улучшает условия охлаждения втулки и снижает тепловые и напряження у ее бурта.

Крышка имеет центральное отверстие дли выпускного кла­пана, два отверстия L со стальными стаканами 31 для форсу­нок, отверстие М со стальным стаканом 21 для пускового клапана, отверстие N для предохранительного клапана отверстие Р для индикаторного крана, два отверстия Z для подхода охлаждающей воды в крышку, патрубки 32 и 29 (отверстие R с резиновыми уплотнитольными кольцами30 и 33 для перепуска охлаждающей воды из крышки в корпус выпуск-ного клапана, четыре отверстия Т для отжимных болтов. Лючкн 4 и пробки 5 используются для осмотра и очистки полости охлаждения крышки. Крышка фиксируется относительно ци­линдра направляющей 7.


    1. Кривошипно-шатунный механизм.


Кривошипно-шатунный механизм служит для передачи усилий от давления газов на коленчатый вал. В крейцкопфных двигателях — из поршня, штока, поперечины, ползуна, шатуна и коленчатого вала.

При работе двигателя в кривошипно-шатунном механизме дей­ствует движущая сила Р, являющаяся суммой сил от давления газов, сил веса и сил инерции. Движущая сила Рд направлена по оси цилиндра и совпадает по направлению с шатуном только при положении поршня в мертвых точках; в остальных положениях она раскладывается на две составляющие — силу Рш, на­правленную по шатуну, и силу Рн, направленную перпендикулярно оси цилиндра. Силу Рш воспринимает коленчатый вал, передающий ее на стенки ци­линдра. В крейцкопфных двигателях ползун передает силу Рн на параллель. Величина Рн зависит от силы давления газов в цилиндре и от площади поршня. В двигателях с диаметром цилиндра 450— 500 мм Рн достигает 120 кН.

В крейцкопфных двигателях головной подшипник шатуна и тру­щаяся пара ползун—параллель вынесены из зоны высоких темпера­тур в картер двигателя, где можно обеспечить надежную смазку. Трущаяся поверхность ползуна залита антифрикционным сплавом (баббитом). Поэтому при равной величине Рн работа трения у пары ползун—параллель меньше, чем у пары поршень —втулка в трон­ковых двигателях, что при прочих равных условиях обеспечивает повышение механического КПД у крейцкопфных двигателей по сравнению с тронковыми на 2—4 % и большую надежность ра­боты головных подшипников.

Поршень двигателя (лист 105)—составной. Головка поршня 10 выполнена из жаростойкой легированной стали, а ко­роткая направляющая 13 — из легированного чугуна перлитной структуры. Верхние три уплотненных кольца 11 с косым зам­ком имеют высоту 16 мм и ширину 26 мм, а нижние три коль­ца 12 с замком внахлест имеют высоту 18 мм при ширине 26 мм. Коксами 23 относительно поршня фиксируются только три ниж­них кольца.

Для уменьшения износа колец в пазы поршня, как и у дви­гателей 76VTBF 160 (см. лист 97, поз. /), закатаны чугунные полукольца.

Сварная вставка 14 и отверстия в головке поршня, улучшая условия стока охлаждаемого масла и повышая скорость движе­ния последнего, способствуют более интенсивному охлаждению стенок.

Шток 16 с диаметром стержня 270 мм — полый, кованый, из углеродистой стали, с трубкой 15 для подвода масла. Он соединен через направляющую с головкой поршня шпильками. Положение сопрягаемых, деталей фиксируется болтом.

Со стальной кованой поперечиной 21 шток соединяется тор­цевой кольцевой поверхностью посредством направляющего хвостовика с гайкой.

Перенос радиальных сверлений для подвода и отвода охлаж­дающего масла со стержня штока в его хвостовик повышает прочность штока и упрощает конструкцию этого узла.

Крейцкопф двигателя — двусторонний. К концам попере­чины из углеродистой стали с полыми шейками диаметром 500 мм болтами крепятся четыре ползуна 30 из литой стали с заливкой рабочих поверхностей баббитом. Конструктивно за­крепление ползунов выполнено более надежно, чем у двигате­ля 74VTBF 160.

Стальные литые направляющие 31 крепятся к стойкам ста­нины шпильками. Планками 37 ограничивается поперечное сме­щение ползунов.

Стальные литые кронштейны 18 и 26 для охлаждения порш­ня крепятся к поперечине шпильками.

Масло на охлаждение поршня поступает по трубопроводу 20 к телескопическому устройству, состоящему из неподвижной трубы 9, подвижной трубы 5 и уплотпитслыюго устройства (см. разрез по ВВ).

Фланец неподвижной трубы закрепляется к опорной пли­те 8 ресивера продувочного воздуха через проставку 7 болтами. Направляющая втулка 6, залитая баббитом, прижимается бол­тами к проставке обжимным фланцем.

Отвод масла от поршня осуществляется сливом через кронш­тейн 18, конец которого движется в продольной прорези колон­ки 17. Отсюда масло по патрубку 19 через воронку 1 с термо­метром 3 поступает в сливную магистраль (см. лист 103). Смот­ровое стекло 2 в кожухе 4 позволяет визуально контролировать систему охлаждения.

Шатун двигателя — с отъемными головными и мотылевым подшипниками. Стержень шатуна 28 диаметром 300 мм из угле­родистой стали, полый, с жесткой безвильчатой головкой.

Головные подшипники 22 диаметром 500 мм имеют ширину рабочей поверхности по 320 мм. Мотылевые подшипники 35 диа­метром 680 мм имеют ширину рабочей поверхности у верхней половины 380 мм и у нижней—300 мм. Нижние половины го­ловных подшипников имеют на рабочих поверхностях продоль­ные и поперечную смазочные канавки.

Коленчатый вал — с составными коленами из двух сек­ций при числе цилиндров больше пяти. Секции вала соединяют­ся при помощи фланцев прецизионными болтами.

Полые рамовые 33 и мотылевые 36 шейки из углеродистой стали имеют одинаковый диаметр по 680 мм и длину соответ­ственно 450 и 390 мм. По торцам шейки закрыты крышками 32 на болтах.

Щеки 34 из литой стали шириной 1500 мм имеют толщину 185 мм. По условиям уравновешивания и зависимости от числа цилиндров двигателя отдельные щеки отливают вместе с про­тивовесами, которые размещаются под разными углами к плос­кости соответствующего колена вала.

Рамовые подшипники имеют стальные вкладыши 29, залитые баббитом, с кольцевой маслоподводящеп канавкой в верхних половинках. Крышки 27 подшипника из стального литья. Они крепятся к фундаментной раме шпильками 25.

Подача масла через верхний вкладыш рамовых подшипни­ков к мотылевым и головным подшипникам показана стрел­ками.

Приводной отсек (лист 106) размещен в средней, а при пяти цилиндрах — в кормовой части двигателя. Привод проме­жуточного вала 35, соединенный с правой и левой частями рас­пределительного вала топливных насосов и выпускных клапа­нов, осуществляется двойной роликовой цепью 28 с шагом 112,5 мм.

Ведущее цепное колесо 29, состоящее из двух половин, за­креплено болтами на соединительном фланце коленчатого вала.

Ведомое цепное колесо 17, также состоящее из двух половин, свободно сидит па втулке, которая соединена с промежуточным валом 35 при помощи двух кривошипов 18, двух поперечин 16, зубчатой передачи и кулачковой муфты (см. лист 108).

Коленчатый вал состоит из рамовых и шатунных шеек, щек и соединительных фланцев. Рамовые шейки, щеки и шатунная шей­ка образуют колено, или кривошип (мотыль), вала (мотыль — старое название, имеющее широкое распространение). Расстояние от центра рамовой до центра шатунной шейки называется радиу­сом кривошипа. Коленчатый вал — одна из наиболее ответствен­ных и напряженных деталей. Стоимость коленчатого вала состав­ляет около 15% стоимости двигателя. Моторесурс двигателя обычно зависит от срока службы вала (до проточки или шли­фовки его шеек).

К коленчатым валам судовых дизелей предъявляют требова­ния обеспечения необходимой прочности, жесткости и износоус­тойчивости.

Вал нагружается силами давления газа и силами инерции поступательно движущихся и вращающихся масс и подвергается одновременному действию зна­копеременных изгибающих и крутящих моментов. В результате воздействия этих сил и моментов материал вала «работает» на усталость. Усталость металла объясняется возникновением в на­иболее слабом месте микроскопической трещины, которая под влиянием знакопеременной нагрузки растет, уменьшая расчетное сечение и вызывая рост напряжений. В итоге напряжения пре­вышают предел прочности материала, вызывая быстрое разру­шение деталей.



3. Механизм распределения.


Распределительный вал.

Привод клапанов (рис. 4) осуществляется от кулачных шайб 2 распределительного вала, на котором могут также крепиться кулачные шайбы 3 привода топливных насо-сов, шестерня / привода распределительного вала, привода центро-бежного регулятора частоты вращения и др. Распределительный вал отковывают из стали. У высокооборотных двигателей малой и средней мощности кулачные шайбы изготовляют за одно целое с валом. У малооборотных двигателей шайбы устанавливают на валу с прессовой посадкой и фиксируют шпонками. Вал лежит на разъем­ных опорных подшипниках. Концевой подшипник воспринимает осевое усилие от привода, поэтому его выполняют опорно-упорным.


Рис. 4. Распределительный вал


На распределительном валу реверсивного двигателя устанавли­вают два комплекта кулачковых шайб: один — для работы двигателя на передний ход, другой — для работы на задний ход. Профиль кулачковой шайбы может быть образован различными кривыми. Он должен обеспечивать плавное набегание и сбегание ролика толка­теля на выступ кулачной шайбы, быстрое открытие и закрытие клапана. При равноплечих клапанных рычагах высота профиля h равна высоте подъема клапана hн. В высокооборот­ных двигателях для уменьшения сил инерции, действующих в частях клапанного механизма, стремятся уменьшить перемещение штанги толкателя. С этой целью применяют неравноплечие рычаги, при этом высота профиля кулачковой шайбы h — 0,8hK, где 0,8 — отношение плеч клапанных рычагов.

Впускные и выпускные клапаны. Впускные и выпускные кла­паны во время работы подвергаются действию высоких температур и значительным динамическим нагрузкам. Температура впускных клапанов 300—400 °С, выпускных 600—800 °С, поэтому материал для клапанов должен отличаться износоустойчивостью, сохранять необходимую механическую прочность при высоких температурах и противостоять газовой коррозии. Впускные клапаны изготовляют из легированных сталей 40ХН, 50ХН, 65ХН, выпускные — из жаро­стойких хромоникелевых сталей ЭЯ2, ЭН107, ЭН69 и др. Для по­вышения износоустойчивости тарелок клапанов на поверхности фаски клапана делают наплавку сверхтвердых сплавов типа стеллита толщиной 0,7—1,5 мм. Клапанные пружины выполняют из высокоуглеродистых марганцовистых или кремнемарганцовистых сталей (60Г, 50ХФА, П1). Для лучшего наполнения и очистки ци­линдра проходные сечения клапанов должны быть наибольшими.

У четырехтактных малооборотных двигателей в крышке цилиндра располагают два клапана: впускной и выпускной. В высокооборот­ных двигателях, у которых скорость поршня 7—8 м/с, устанавли­вают два впускных и два выпускных клапана, при этом увеличивается общее проходное сечение клапанов, уменьшаются масса, а следо­вательно, и силы инерции в механизме газораспределения, улуч-шаются условия теплоотвода от клапана. В двухтактных двигателях с прямоточно-клапанной продувкой в зависимости от скорости поршня и конструкции двигателя в крышке цилиндра располагают от одного до четырех выпускных клапанов.

/Впускные и выпускные клапаны можно ставить непосредственно в крышке цилиндра или в отдельном корпусе. При установке клапана непосредственно в крышке можно увеличить диаметр тарелки клапана примерно на 20 %, что очень важно для высокооборотных двигателей. Однако чтобы за­менить или притереть клапан, необходимо снимать крышку ци­линдра.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: