Xreferat.com » Рефераты по авиации и космонавтике » Земля - планета Солнечной системы

Земля - планета Солнечной системы

1,4 · 103 кг/м3.

Ускорение силы тяжести (g) = 2,7 · 102 м/с2.

На основе этих данных, используя закон всемирного тяготения и уравнение газового состояния, можно рассчитать условия внутри Солнца. Такие расчеты позволяют получить модель «спокойного» Солнца. При этом принимается, что в каждом его слое соблюдается условие гидростатического равновесия: действие сил внутреннего давления газа уравновешивается действием сил тяготения. Согласно современным данным, давление в центре Солнца достигает 2 · 108 Н/м2, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 · 105 кг/м3, т. е. в 13 раз больше плотности свинца. Тем не менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тысяч раз меньше размеров самого атома. Поэтому размеры самих частиц пренебрежимо малы по сравнению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выполняется, несмотря на его высокую плотность. Такое состояние вещества принято называть плазмой. Ее температура в центре Солнца достигает примерно 15 млн К.

При столь высокой температуре протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу – ядро гелия. Реакция сопровождается выделением определенной порции энергии – гамма-кванта. Из недр Солнца наружу эта энергия передается двумя способами: излучением, т. е. самими квантами, и конвекцией, т. е. веществом.

Выделение энергии и ее перенос определяют внутреннее строение Солнца: ядро – центральная зона, где происходят термоядерные реакции, зона передачи энергии излучением и наружная конвективная зона. Каждая из этих зон занимает примерно 1/3 солнечного радиуса (рис. 4).

Земля - планета Солнечной системы

Рис. 4. Строение Солнца


Следствием конвективного движения вещества в верхних слоях Солнца является своеобразный вид фотосферы – грануляция. Фотосфера как бы состоит из отдельных зерен – гранул, размеры которых составляют в среднем несколько сотен (до 1000) километров. Гранула представляет собой поток горячего газа, поднимающийся вверх. В темных промежутках между гранулами находится более холодный газ, опускающийся вниз. Каждая гранула существует всего 5-10 мин, затем на ее месте появляется новая, которая отличается от прежней по форме и размерам. Однако общая наблюдаемая картина при этом не меняется.

Фотосфера – самый нижний слой атмосферы Солнца. За счет энергии, поступающей из недр Солнца, вещество фотосферы приобретает температуру около 6000 К. Прилегающий к ней тонкий (около 10 000 км) слой называют хромосферой, выше которой на десятки радиусов Солнца простирается солнечная корона (см. рис. 4). Плотность вещества в короне по мере удаления от Солнца постепенно уменьшается, но потоки плазмы из короны (солнечный ветер) проходят через всю планетную систему. Основными составляющими солнечного ветра являются протоны и электроны, которые значительно меньше альфа-частиц (ядер гелия) и других ионов.

Как правило, в атмосфере Солнца наблюдаются многообразные проявления солнечной активности, характер протекания которых определяется поведением солнечной плазмы в магнитном поле, – пятна, вспышки, протуберанцы и т. п. Наиболее известными из них являются солнечные пятна, открытые еще в начале XVII в. во время первых наблюдений при помощи телескопа. Впоследствии оказалось, что пятна появляются в тех сравнительно небольших областях Солнца, которые выделяются очень сильными магнитными полями.

Сначала пятна наблюдаются как маленькие темные участки диаметром 2000–3000 км. Большинство из них в течение суток пропадает, однако некоторые увеличиваются в десятки раз. Такие пятна могут образовывать большие группы и существовать, меняя форму и размеры, на протяжении нескольких месяцев, т. е. нескольких оборотов Солнца. У крупных пятен вокруг наиболее темной центральной части (ее называют тень) наблюдается менее темная полутень. В центре пятна температура вещества снижается до 4300 К. Несомненно, что такое понижение температуры связано с действием магнитного поля, которое нарушает нормальную конвекцию и тем самым препятствует притоку энергии снизу.

Самыми мощными проявлениями солнечной активности являются вспышки, в процессе которых за несколько минут иногда выделяется энергия до 1025Дж (такова энергия примерно миллиарда атомных бомб). Вспышки наблюдаются как внезапные усиления яркости отдельных участков Солнца в районе пятна. По скорости протекания вспышка подобна взрыву. Продолжительность сильных вспышек в среднем достигает 3 ч, а слабые длятся всего 20 мин. Вспышки также связаны с магнитными полями, которые в этой области после вспышки существенно меняются (как правило, ослабевают). За счет энергии магнитного поля плазма может нагреваться до температуры порядка 10 млн K. При этом значительно увеличивается скорость ее потоков, которая достигает 1000–1500 км/с, возрастает энергия электронов и протонов, входящих в состав плазмы. За счет этой дополнительной энергии возникает оптическое, рентгеновское, гамма– и радиоизлучение вспышек.

Потоки плазмы, образующиеся во время вспышки, через сутки-двое достигают окрестностей Земли, вызывая магнитные бури и другие геофизические явления. Например, при сильных вспышках практически прекращается слышимость радиопередач на коротких волнах по всему освещенному полушарию нашей планеты.

Наиболее крупными по своим масштабам проявлениями солнечной активности являются наблюдаемые в солнечной короне протуберанцы (см. рис. 4) – огромные по объему облака газа, масса которых может достигать миллиардов тонн. Некоторые из них («спокойные») напоминают по форме гигантские занавеси толщиной 3–5 тыс. км, высотой около 10 тыс. км и длиной до 100 тыс. км, подпираемые колоннами, по которым газ течет из короны вниз. Они медленно меняют свою форму и могут существовать в течение нескольких месяцев. Во многих случаях в протуберанцах наблюдается упорядоченное движение отдельных сгустков и струй по криволинейным траекториям, напоминающим по форме линии индукции магнитных полей. Во время вспышек отдельные части протуберанцев могут подниматься вверх со скоростью до нескольких сотен километров в секунду на огромную высоту – до 1 млн км, что превышает радиус Солнца.

Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определенной, хотя и не очень строгой, периодичностью – в среднем этот период составляет примерно 11,2 года. Отмечается определенная связь процессов жизнедеятельности растений и животных, состояния здоровья людей, погодно-климатических аномалий и других геофизических явлений и уровня солнечной активности. Однако механизм воздействия процессов солнечной активности на земные явления еще не вполне ясен.

7. Звезды


Наше Солнце справедливо называют типичной звездой. Но среди огромного многообразия мира звезд есть немало таких, которые очень значительно отличаются от него по своим физическим характеристикам. Поэтому более полное представление о звездах дает следующее определение:

звезда– это пространственно обособленная, гравитационно связанная, непрозрачная для излучения масса вещества, в которой в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Светимость звезд. Всю информацию о звездах мы можем получить только на основе исследования приходящего от них излучения. Наиболее значительно звезды отличаются друг от друга по своей светимости (мощности излучения): некоторые излучают энергии в несколько миллионов раз больше, чем Солнце, другие – в сотни тысяч раз меньше.

Солнце кажется нам самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звезд. Самая близкая из них альфа Центавра расположена в 270 тыс. раз дальше от нас, чем Солнце. Если находиться на таком расстоянии от Солнца, то оно будет выглядеть примерно таким, как наиболее яркие звезды созвездия Большой Медведицы.

Удаленность звезд. Вследствие того что звезды от нас очень далеки, лишь в первой половине XIX в. удалось обнаружить их годичный параллакс и вычислить расстояние. Еще Аристотель, а затем Коперник знали, какие наблюдения за положением звезд надо провести, чтобы обнаружить их смещение в том случае, если Земля движется. Для этого необходимо наблюдать положение какой-либо звезды из двух диаметрально противоположных точек ее орбиты. Очевидно, что направление на эту звезду за это время изменится, причем тем больше, чем ближе к нам расположена звезда. Так что это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до нее.

Годичным параллаксом (р) принято называть угол, под которым со звезды виден радиус (r) земной орбиты, перпендикулярный лучу зрения (рис. 5). Этот угол столь мал (менее 1 '), что ни Аристотелю, ни Копернику его обнаружить и измерить не удалось, поскольку они вели наблюдения без оптических приборов.


Земля - планета Солнечной системы

Рис. 5. Годичный параллакс звезд


Единицами расстояний до звезд являются парсек и световой год.

Парсек – это такое расстояние, на котором параллакс звезд равен 1 '. Отсюда и название этой единицы: пар – от слова «параллакс», сек – от слова «секунда».

Световой год – это такое расстояние, которое свет, распространяясь со скоростью 300 000 км/с, проходит за 1 год.

1 пк (парсек) = 3,26 светового года.

Определив расстояние до звезды и количество приходящего от нее излучения, можно вычислить ее светимость.

Если расположить звезды на диаграмме в соответствии с их светимостью и температурой, то окажется, что по этим характеристикам можно выделить несколько типов (последовательностей) звезд (рис. 6): сверхгиганты, гиганты, главная последовательность, белые карлики и т. д. Наше Солнце вместе со многими другими звездами относится к числу звезд главной последовательности.

Земля - планета Солнечной системы

Рис. 6. Диаграмма «температура – светимость» для ближайших звезд


Температура звезд. Температуру наружных слоев звезды, от которых приходит излучение, можно определить по спектру. Как известно, цвет нагретого тела зависит от его температуры. Иначе говоря, положение длины волны, на которую приходится максимум излучения, с повышением температуры смещается от красного к фиолетовому концу спектра. Следовательно, по распределению энергии в спектре можно определить температуру наружных слоев звезды. Как оказалось, эта температура для различных типов звезд заключена в пределах от 2500 до 50 000 K.

По известной светимости и температуре звезды можно рассчитать площадь ее светящейся поверхности и тем самым определить ее размеры. Оказалось, что гигантские звезды в сотни раз превосходят Солнце по диаметру, а звезды-карлики в десятки и сотни раз меньше него.

Масса звезд. В то же время по массе, которая является важнейшей характеристикой звезд, они отличаются от Солнца незначительно. Среди звезд нет таких, которые имели бы массу в 100 раз больше Солнца, и таких, у которых масса в 10 раз меньше, чем у Солнца.

В зависимости от массы и размеров звезд они различаются по своему внутреннему строению, хотя все имеют примерно одинаковый химический состав (95–98 % их массы составляют водород и гелий).

Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах все еще происходят термоядерные реакции, в результате которых из четырех протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звезды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После «выгорания» водорода начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерод-12, а также другие реакции, продуктами которых являются кислород и ряд более тяжелых элементов (натрий, сера, магний и т. д.). Таким образом, в недрах звезд образуются ядра многих химических элементов, вплоть до железа.

Образование из ядер железа ядер более тяжелых элементов может происходить только с поглощением энергии, поэтому дальнейшие термоядерные реакции прекращаются. У наиболее массивных звезд в этот момент происходят катастрофические явления: сначала стремительное сжатие (коллапс), а затем мощный взрыв. В результате звезда сначала значительно увеличивается в размерах, ее яркость возрастает в десятки миллионов раз, а затем сбрасывает в космическое пространство внешние слои. Это явление наблюдается как вспышка сверхновой звезды, на месте которой остается небольшая быстровращающаяся нейтронная звезда – пульсар.

Итак, мы знаем теперь, что все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, идущих в звездах. Поэтому звезды являются не только самыми распространенными во Вселенной объектами, но и самыми важными для понимания явлений и процессов, происходящих на Земле и за ее пределами.

8. Наша Галактика


Практически все объекты, видимые невооруженным глазом в Северном полушарии звездного неба, составляют единую систему небесных тел (главным образом звезд) – нашу Галактику (рис. 7).

Характерной ее деталью для земного наблюдателя является Млечный Путь, в котором уже первые наблюдения с помощью телескопа позволили различить множество слабых звезд. Как вы можете сами убедиться в любую ясную безлунную ночь, он простирается через все небо светлой белесоватой полосой клочковатой формы. Вероятно, кому-то он напомнил след от пролитого молока, а потому, наверное, не случайно термин «галактика» происходит от греческого слова galaxis, которое означает «молочный, млечный».

Не входит в состав Галактики лишь слабозаметное туманное пятно, видимое в направлении созвездия Андромеды и напоминающее по форме пламя свечи, – туманность Андромеды. Она представляет собой другую, подобную нашей, звездную систему, удаленную от нас на расстояние 2,3 млн световых лет.

Только когда в 1923 г. в этой туманности удалось различить несколько наиболее ярких звезд, ученые окончательно убедились, что это не просто туманность, а другая галактика. Это событие можно считать также и «открытием» нашей Галактики. И в дальнейшем успехи в ее исследовании во многом были связаны с изучением других галактик.

Наши знания о размерах, составе и структуре Галактики получены в основном за последние полвека. Диаметр нашей Галактики примерно 100 тыс. световых лет (около 30 тыс. парсек). Число звезд – около 150 млрд, и составляют они 98 % ее общей массы. Оставшиеся 2 % – межзвездное вещество в виде газа и пыли.

Звезды образуют различные по форме и численности объектов скопления – шаровые и рассеянные. В рассеянных скоплениях относительно немного звезд – от нескольких десятков до нескольких тысяч. Самым известным рассеянным скоплением являются Плеяды, видимые в созвездии Тельца. В том же созвездии находятся Гиады – треугольник из слабых звезд вблизи яркого Альдебарана. Часть звезд, относящихся к созвездию Большой Медведицы, также составляет рассеянное скопление. Практически все скопления этого типа видны вблизи Млечного Пути.

Шаровые звездные скопления насчитывают в своем составе сотни тысяч и даже миллионы звезд. Лишь два из них – в созвездиях Стрельца и Геркулеса – можно с трудом увидеть невооруженным глазом. Шаровые скопления распределяются в Галактике по-иному: большая часть расположена вблизи ее центра, а по мере удаления от него их концентрация в пространстве уменьшается.

Различается и «население» скоплений этих двух типов. В состав рассеянных скоплений входят главным образом звезды, относящиеся (как и Солнце) к главной последовательности. В шаровых – много красных гигантов и субгигантов.

Эти различия объясняются в настоящее время различием возраста звезд, входящих в состав скоплений разного типа, а следовательно, и возраста самих скоплений. Расчеты показали, что возраст многих рассеянных скоплений примерно 2–3 млрд лет, в то время как возраст шаровых скоплений значительно больше и может достигать 12–14 млрд лет.

Поскольку распределение в пространстве скоплений отдельных звезд разных типов и других объектов оказалось различным, стали выделять пять подсистем, образующих единую звездную систему – Галактику:

– плоскую молодую;

– плоскую старую;

– промежуточную подсистему «диск»;

– промежуточную сферическую;

– сферическую.

Земля - планета Солнечной системы

Рис. 7. Строение Галактики


Их расположение представлено на схеме, показывающей структуру Галактики в плоскости, перпендикулярной плоскости Млечного Пути (см. рис. 7). На рисунке указано также положение Солнца и центральной части Галактики – ее ядра, которое находится в направлении созвездия Стрельца.

Измеряя взаимное расположение звезд на небе, астрономы еще в начале XVIII в. заметили, что координаты некоторых ярких звезд (Альдебарана, Арктура и Сириуса) изменились по сравнению с теми, которые были получены в древности. Впоследствии стало очевидным, что скорости движения в пространстве у различных звезд отличаются довольно значительно. Самая «быстрая» из них, получившая название «летящая звезда Барнарда», за год перемещается по небу на 10,8 '. Это означает, что 0,5° (угловой диаметр Солнца и Луны) она проходит менее чем за 200 лет. В настоящее время эта звезда (ее звездная величина 9,7) находится в созвездии Змееносца. Большинство из 300 000 звезд, собственное движение которых измерено, меняют свое положение значительно медленнее – смещение составляет всего лишь сотые и тысячные доли угловой секунды за год. В целом же все звезды движутся вокруг центра Галактики. Солнце совершает один оборот примерно за 220 млн лет.

Существенные сведения о распределении межзвездного вещества в Галактике удалось получить благодаря развитию радиоастрономии. Во-первых, выяснилось, что межзвездный газ, основную массу которого составляет водород, образует вокруг центра Галактики ветви, имеющие спиральную форму. Такая же структура прослеживается и по некоторым типам звезд.

Поэтому наша Галактика относится к наиболее распространенному классу спиральных галактик.

Надо отметить, что межзвездное вещество существенно осложняет изучение Галактики оптическими методами. Оно распределено в объеме пространства, занятом звездами весьма неравномерно. Основная масса газа и пыли располагается вблизи плоскости Млечного Пути, где образует огромные (диаметром сотни световых лет) облака, называемые туманностями. В пространстве между облаками тоже есть вещество, хотя и в очень разреженном состоянии. Форма Млечного Пути, видимые в нем темные промежутки (самый большой из них вызывает его раздвоение, которое протянулось от созвездия Орла до созвездия Скорпиона) объясняются тем, что межзвездная пыль мешает нам видеть свет расположенных за этими облаками звезд. Именно такие облака не дают нам возможности увидеть ядро Галактики, которое можно изучать, только принимая идущие от него инфракрасное излучение и радиоволны.

В тех редких случаях, когда поблизости от газопылевого облака располагается горячая звезда, эта туманность становится светлой. Мы видим ее потому, что пыль отражает свет яркой звезды.

В Галактике наблюдаются различные типы туманностей, образование которых самым тесным образом связано с эволюцией звезд. К их числу относятся планетарные туманности, которые были названы так, поскольку в слабые телескопы они выглядят как диски далеких планет – Урана и Нептуна. Это внешние слои звезд, отделившиеся от них при сжатии ядра и превращении звезды в белого карлика. Эти оболочки расширяются и в течение нескольких десятков тысяч лет рассеиваются в космическом пространстве.

Другие туманности являются остатками вспышек сверхновых звезд. Самая известная из них – Крабовидная туманность в созвездии Тельца – результат вспышки сверхновой звезды, столь яркой, что в 1054 г. ее видели даже днем в течение 23 сут. Внутри этой туманности наблюдают пульсар, у которого с периодом его вращения, равным 0,033 с, меняется яркость в оптическом, рентгеновском и радиодиапазонах. Подобных объектов известно уже более 500.

Именно в звездах в процессе термоядерных реакций происходит образование многих химических элементов, а во время вспышек сверхновых образуются даже ядра тяжелее железа. Потерянный звездами газ с повышенным содержанием тяжелых химических элементов меняет состав межзвездного вещества, из которого впоследствии образуются звезды. Поэтому химический состав звезд «второго поколения», к числу которых принадлежит, вероятно, и наше Солнце, несколько отличается от состава старых звезд, образовавшихся ранее.


9. Строение и эволюция Вселенной


Кроме туманности Андромеды невооруженным глазом можно видеть еще две галактики: Большое и Малое Магеллановы Облака. Они видны только в Южном полушарии, поэтому европейцы узнали о них лишь после кругосветного путешествия Магеллана. Это спутники нашей Галактики, отстоящие от нее на расстоянии около 150 тыс. световых лет. На таком расстоянии звезды, подобные Солнцу, ни в телескоп, ни на фотографиях не видны. Зато в большом количестве наблюдаются горячие звезды большой светимости – сверхгиганты.

Галактики представляют собой гигантские звездные системы, в составе которых насчитывается от нескольких миллионов до нескольких триллионов звезд. Кроме того, в галактиках содержится различное (в зависимости от типа) количество межзвездного вещества (в виде газа, пыли и космических лучей).

В центральной части многих галактик располагается сгущение, которое называют ядром, где идут активные процессы, связанные с выделением энергии и выбросом вещества.

У некоторых галактик в радиодиапазоне наблюдается значительно более мощное излучение, чем в видимой области спектра. Такие объекты получили название радиогалактик. Еще более мощными источниками радиоизлучения являются квазары, которые и в оптическом диапазоне излучают больше, чем галактики. Квазары – это самые удаленные от нас известные во Вселенной объекты. Некоторые из них находятся на огромных расстояниях, превышающих 5 млрд световых лет.

По-видимому, квазары представляют собой чрезвычайно активные ядра галактик. Находящиеся вокруг ядра звезды неразличимы, поскольку квазары очень далеки, а их большая яркость не позволяет обнаружить слабый свет звезд.

Исследования галактик показали, что в их спектрах линии обычно бывают смещены в сторону его красного конца, т. е. в сторону более длинных волн. Это означает, что практически все галактики (за исключением нескольких самых близких) удаляются от нас.

Однако существование этого закона вовсе не означает, что галактики разбегаются от нас, от нашей Галактики как от центра. Такая же картина разбегания будет наблюдаться с любой другой галактики. А это означает, что все наблюдаемые галактики удаляются друг от друга.

Рассмотрим огромный шар (Вселенную), который состоит из отдельных точек (галактик), однородно распределенных внутри него и взаимодействующих согласно закону всемирного тяготения. Если представить себе, что в какой-то начальный момент времени галактики неподвижны относительно друг друга, то в результате взаимного притяжения они уже в следующий момент не останутся неподвижными и начнут сближаться. Следовательно, Вселенная будет сжиматься, и плотность вещества в ней станет возрастать. Если же в этот начальный момент галактики удалялись друг от друга, т. е. Вселенная расширялась, то тяготение будет уменьшать скорости их взаимного удаления. Дальнейшая судьба галактик, удаляющихся от центра шара с определенной скоростью, зависит от соотношения этой скорости со «второй космической» скоростью для шара данного радиуса и массы, который состоит из отдельных галактик.

Если скорости галактик больше второй космической, то они будут неограниченно удаляться – Вселенная будет бесконечно расширяться. Если же они меньше второй космической, то расширение Вселенной должно смениться сжатием.

На основе имеющихся данных в настоящее время невозможно сделать определенные выводы о том, по какому из этих вариантов будет происходить эволюция Вселенной. Однако можно с уверенностью сказать, что в прошлом плотность вещества во Вселенной была значительно больше, чем в настоящее время. Галактики, звезды и планеты не могли существовать как самостоятельные объекты, а вещество, из которого они теперь состоят, было качественно иным и представляло собой однородную, очень горячую и плотную среду. Ее температура превышала 10 млрд градусов, а плотность была больше плотности ядер атомов, которая составляет 1017 кг/м3. Об этом свидетельствуют не только теория, но и результаты наблюдений. Как следует из теоретических расчетов, наряду с веществом горячую Вселенную на ранних стадиях ее существования заполняли кванты электромагнитного излучения, обладавшие высокой энергией. В процессе расширения Вселенной энергия квантов уменьшалась и в настоящее время должна соответствовать 5–6 K. Это излучение, названное реликтовым, было действительно обнаружено в 1965 г.

Так было получено подтверждение теории горячей Вселенной, начальную стадию существования которой часто называют Большим взрывом. В настоящее время разработана теория, которая описывает процессы, происходившие во Вселенной с первых мгновений ее расширения. Первоначально во Вселенной не могли существовать ни атомы, ни даже сложные атомные ядра. В этих условиях происходили взаимные превращения нейтронов и протонов при их взаимодействии с другими элементарными частицами: электронами, позитронами, нейтрино и антинейтрино. После того как температура во Вселенной снизилась до 1 млрд градусов, энергия квантов и частиц стала недостаточной, чтобы препятствовать образованию простейших ядер атомов дейтерия, трития, гелия-3 и гелия-4. Спустя примерно 3 минуты после начала расширения Вселенной в ней установилось определенное соотношение содержания ядер водорода (примерно 70 %) и ядер гелия (около 30 %). Это соотношение затем сохранялось на протяжении миллиардов лет до тех пор, пока из этого вещества не сформировались галактики и звезды, в недрах которых вследствие термоядерных реакций стали образовываться более сложные атомные ядра. В межзвездной среде сложились условия для образования нейтральных атомов, затем молекул.

Картина эволюции Вселенной, открывшаяся перед нами, поражает воображение и удивляет. Не переставая удивляться, не следует забывать, что все это открыл человек – обитатель маленькой пылинки, затерянной в безграничных просторах Вселенной, – обитатель планеты Земля.


Список использованной литературы


1. Аруцев А.А., Ермолаев Б.В., Кутателадзе И.О., Слуцкий М. Концепции современного естествознания. С учебное пособие. М. 1999

2. Петросова Р.А., Голов В.П., Сивоглазов В.И., Страут Е.К. Естествознание и основы экологии. Учебное пособие для средних педагогических учебных заведений. М.: Дрофа, 2007, 303 стр.

3. Савченко В.Н., Смагин В.П.. НАЧАЛА СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ КОНЦЕПЦИИ И ПРИНЦИПЫ. Учебное пособие. Ростов-на-Дону. 2006.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: