Солнце

этот вопрос. Детальное объяснение природы солнечного цикла является фундаментальной проблемой солнечной физики, которую еще предстоит решить.


Солнце – источник энергии


Излучаемая Солнцем энергия вырабатывается в ядерных реакциях ( эрг/сек или 386 миллиардов миллиардов мегаватт). Каждую секунду около 700,000,000 тонн водорода превращается в 695,000,000 тон гелия и 5,000,000 тонн (=эрг) энергии в форме гамма лучей. Пока эта энергия (излученная в виде гамма квантов) путешествует наружу по направлению к поверхности, она постепенно поглощается и переизлучается в виде волн все большей длины так, что когда она достигает поверхности, она превращается в видимый свет. Последние 20% пути к поверхности энергия переносится конвекцией. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ опускается вниз. Физические условия во внутренних слоях Солнца определяются с помощью теоретических расчетов и проверяются на основании изучения распространения волн в недрах Солнца, а также путем регистрации солнечных нейтрино, возникающих в результате ядерных реакций в центральных его слоях. При температурах существующих в центре Солнца атомы движутся с огромными скоростями, достигающими, например, для протонов, сотен километров в секунду. Поскольку плотность вещества очень велика, весьма часто происходят взаимодействия частиц с квантами (фотонами), а также и между собою. В результате этих процессов внешние электронные оболочки атомов полностью разрушаются, от атомов остаются лишь "голые" атомные ядра. Иными словами, все атомы находятся в состоянии очень высокой степени ионизации. Это означает, что размеры частиц уменьшаются от обычных (порядка 10-10 м) до ядерных (порядка 10-15 м). Поэтому сильно ионизованный газ остается газом даже при очень высоких плотностях порядка 1,5· 105 кг/м3 (150 г/см3). Вследствие частых и сильных столкновений и сближений между частицами в "горячей" и плотной плазме, в ней возрастает вероятность взаимодействия между элементарными частицами и атомными ядрами, и происходят ядерные реакции. При обычных столкновениях сближению одинаково заряженных частиц препятствует электростатическое отталкивание, происходящее по закону Кулона (кулоновский барьер). Именно для его преодоления частицы должны иметь огромные энергии, т.е. температура плазмы должна быть очень высокой. Возникающие при этом ядерные реакции называют термоядерными. Взаимные столкновения протонов обладают наименьшим кулоновским барьером, поэтому в первую очередь в недрах звезд возникают реакции синтеза легких ядер, а эволюция звезд начинается с выгорания водорода и других наиболее легких химических элементов. В недрах Солнца каждый протон ежесекундно испытывает миллионы столкновений, но только малое их число заканчивается его объединением с другим протоном. Однако, благодаря огромному общему числу протонов, "выгорание" водорода оказывается длительно эффективным. Во время ядерных реакций синтеза выделяются огромные энергии (несколько МэВ в расчете на один нуклон 1Мэвэрг), что значительно превосходит энерговыделение, обусловленное другими известными механизмами (например, химическим горением). При этом масса образующихся ядер не равна сумме масс входящих в них нуклонов, но несколько меньше нее на величину так называемого дефекта массы. Это объясняется наличием сильной связи между нуклонами в ядре, так что для их освобождения необходимо затратить энергию, равную энергии этой связи. При обратном процессе синтеза ядер из свободных нуклонов в центре Солнца выделяется такая же энергия. Ее величина, согласно известному соотношению Эйнштейна, равна дефекту массы, умноженному на квадрат огромной величины - скорости света!

Основным источником энергии в недрах Солнца является последовательность реакций с участием протонов - водородный цикл, или протон - протонная цепочка термоядерных реакций. В конечном счете, она приводит к превращению водорода в гелий. Примерно в 70 % случаев она состоит из трех основных реакций.

Первая из них начинается с распада протона 1H, который в свободном состоянии необычайно устойчив. Распад может произойти в краткий миг исключительно тесного сближения (столкновения) двух протонов. Тогда возможно превращение одного из них в нейтрон с испусканием позитрона e+ и нейтрино  . Объединяясь со вторым протоном, этот нейтрон образует ядро тяжелого водорода - дейтерия 2D. На языке ядерных реакций это выглядит так:

1H + 1H  2D + e+ +  + 1,442 Мэв

В конце этой строки указаны выделяющаяся при этом энергия. Нейтрино, движущееся со скоростью света, крайне слабо взаимодействует с веществом и практически беспрепятственно проходит через все Солнце, покидая его. Позитрон же, возникший при распаде протона, немедленно аннигилирует с первым встречным электроном, испуская пару гамма-квантов.

Поскольку для каждой пары протонов первый этап водородной реакции осуществляется за 14 млрд. лет, она и определяет медленность термоядерных реакций на Солнце и общее время его эволюции.

Во второй реакции дейтроны, возникшие в результате первой реакции, за считанные секунды захватывают новые протоны, испуская  кванты и образуя ядра изотопа 3He:

2D + 1H  3 He +  + 5,494 Мэв

Благодаря третьей реакции, в течение времени порядка миллиона лет ядра изотопа 3He могут слиться и, высвободив два протона, образовать ядро обычного гелия 4He ( - частицу):

3He + 3He  4He + 21H + 12,860 Мэв

Очевидно, что для полного завершения описанной цепочки реакций первые две из них должны произойти дважды. С учетом этого можно подсчитать, что слияние четырех протонов в одну -частицу сопровождается выделением энергии 26,732 МэВ, из которой около 0,5 МэВ уносится двумя нейтрино, свободно покидающими Солнце, а остальная часть переходит в  кванты и тепловую энергию газа. Источником этой энергии является энергия связи ядра 4He, соответствующая дефекту массы, равному 0,73 % массы четырех свободных протонов.


Солнечные нейтрино


Помимо энергии, выделяющейся во время термоядерных реакций в форме  квантов, а также и непосредственно в виде кинетической энергии возникающих частиц, важную роль играет образование нейтрино, поток которых должен буквально пронизывать всю Землю. Нейтрино - частицы, чрезвычайно слабо взаимодействующие с веществом. Поэтому они свободно выходят из недр Солнца и со скоростью, очень близкой к световой, распространяются в космическом пространстве, почти не поглощаясь веществом на их пути. Возникновение на Солнце каждой частицы связано с выделением по крайней мере 26,7 МэВ энергии, поддерживающей наблюдаемую светимость Солнца. Каждый такой акт сопровождается излучением двух нейтрино. Отсюда можно подсчитать, что полная нейтринная "светимость" Солнца, независимо от деталей термоядерных процессов, состовляет 1038 нейтрино за 1 секунду, а поток солнечных нейтрино на Земле порядка 1011 нейтрино за секунду через площадку в 1 см2. Важно, что нейтрино от разных реакций обладают неодинаковыми энергиями. Скорости отдельных ядерных реакций и тем самым величина соответствующих потоков нейтрино сильно зависят от температуры и параметров химического состава и, в первую очередь, от содержания гелия. Поэтому, регистрируя потоки солнечных нейтрино различных энергий, можно получить прямые экспериментальные данные об условиях в недрах Солнца.

В настоящее время в различных лабораториях мира проводятся сложные эксперименты по регистрации солнечных нейтрино. Они основаны на относительно большой вероятности захвата нейтрино некоторыми атомными ядрами (Cl, Ga, Li, Br, I и т.д.), а также на регистрации специального вида излучения (называемого черенковским), возникающего при рассеянии нейтрино на электронах. В конце столетия наиболее успешными оказались три важных эксперимента.

Хлор-аргонный эксперимент был предложен Бруно Понтекорво в 1946 г. и впервые осуществлен в 1967 г. Раймондом Дэвисом в Южной Дакоте (США). Он основан на реакции поглощения нейтрино изотопом хлора с атомным весом 37:

37Cl +  = e + 37Ar.

Рабочим веществом в этом процессе является богатый хлором перхлорэтилен C2 Cl4. Ядра хлора этого вещества способны поглощать нейтрино с энергиями больше 0,814 МэВ, испуская электрон и образуя радиоактивный изотоп 37Ar с периодом полураспада 35 дней. Поэтому достаточно долго (в течение трех-четырех месяцев) можно накапливать продукт реакции и применять физико-химические методы его извлечения. Сосуд с 615 тоннами жидкого перхлорэтилена был установлен на дне шахты глубиной 1455 м, куда почти не достигают космические лучи, которые могут порождать нейтрино при столкновениях с ядрами различных атомов.

Результаты двадцатилетних наблюдений Р.Дэвиса, показывают, что наблюдаемый поток солнечных нейтрино с энергиями более 0,814 МэВ в среднем соответствует 0,420 0,045 захватов в сутки или 2,55 0,25 специальных "солнечных нейтринных единиц" вместо теоретически ожидаемых 8,0 1,0 SNU.

Солнечная нейтринная единица (SNU = Solar Neutrino Units): 1 SNU соответствует потоку нейтрино, при котором в детекторе с 1036 ядерами 37Cl за 1 с образуется одно ядро 37Ar. Таким образом, в эксперименте Дэвиса фактически (после учета фона, создаваемого космическими лучами) регистрируется одна солнечная частица нейтрино в течение 2 -- 3 дней. Теоретически ожидаемый поток солнечных нейтрино в хлорном эксперименте соответствует 8,0 1,0 SNU, а для галлиевого детектора он составляет 132 7 SNU.

Галлиевый эксперимент был предложен в 1964 г. российским астрофизиком В.А.Кузьминым. В его основе лежит возможность взаимодействия нейтрино с ядром изотопа галлия 71Ga с образованием радиоактивного изотопа германия 71Ge:

71Ga +  = e + 71Ge.

Важным преимуществом этого метода является относительно большая вероятность взаимодействия нейтрино с галлием и и низкий порог энергии (0,233 МэВ), позволяющий регистрировать нейтрино от основной реакции позитронного распада протона. Период полураспада радиоактивного германия 11,4 дня. Для регистрации одного захвата нейтрино в сутки достаточно 20 т галлия. В 1990 г. начал функционировать российский детектор SAGE (Soviet-American Gallium Experiment), использующий 57 т галлия в Баксанском ущелье на Северном Кавказе, а в следующем году -- в Итальянских Альпах (GALLEX, 30 т галлия). Предварительные результаты SAGE дали скорость счета 73 19 SNU, а GALLEX дал 79 12 SNU при теоретически ожидаемом значении 132 7 SNU.

Результаты экспериментов по регистрации солнечных нейтрино приводят к значениям меньше ожидаемых в несколько раз. Особенно велико различие в 4 раза для хлорного детектора, для которого имеются наиболее длительные ряды наблюдений. Основная трудность интерпретации этих расхождений связана с тем, что между данными различных экспериментов нет внутреннего согласия. Последние два десятилетия велась упорная работа, как по совершенствованию методики самого эксперимента, так и по уточнению стандартных теоретических моделей внутреннего строения Солнца. Несмотря на эти усилия, расхождения остаются почти на прежнем уровне. Это наводит на мысль о том, что истинная причина расхождений связана с недостаточностью наших знаний о самой физической природе нейтрино. Одна из гипотез (возможно, подтверждаемая некоторыми опытами) предполагает наличие у нейтрино способности самопроизвольно переходить в нейтрино других видов, в то время как все эксперименты регистрируют лишь электронные нейтрино, возникающие при бета распадах.


Солнечные затмения


Полное солнечное затмение – интереснейшее явление природы, знакомое человеку с глубокой древности. Оно бывает сравнительно часто, но видно не из всех местностей земной поверхности и поэтому многим кажется редким. Солнечные затмения происходят в новолуния, когда Луна, обращаясь вокруг Земли, оказывается между Землей и Солнцем и полностью или частично заслоняет его. Луна расположена ближе к Земле, чем Солнце, почти в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы, и Луна может закрыть собой Солнце. Если во время солнечного затмения Луна находится в наибольшем удалении от Земли, то лунный диск будет немного меньше солнечного, и лунная тень не доходит до Земли. Вокруг темной Луны видно яркое кольцо незакрытой поверхности Солнца, т.е. произойдет кольцеобразное солнечное затмение, которое может продолжаться до 12 минут. Полное и кольцеобразное солнечные затмения начинаются с частных фаз. Во время кратковременной полной фазы мы получаем возможность увидеть солнечную корону во всей ее красе и обстоятельно ее исследовать. Для выполнения этих исследований астрономы совершают экспедиции в полосу полного затмения, туда, где тень Луны пробежит по земной поверхности. Частные солнечные затмения происходят чаще полных, но они гораздо менее информативны; их также стараются не пропустить усердные наблюдатели небесных явлений, выполняя более ограниченную программу. Солнечное затмение начинается с первого контакта, когда диск Луны касается диска Солнца. Прикосновение происходит на правом краю солнечного диска. Момент первого контакта очень трудно уловить; следует заранее знать, в каком месте солнечного диска должно произойти касание. Соответствующий позиционный угол точки касания сообщается в астрономических календарях. Второй контакт – начало полной фазы затмения, третий – ее конец, а четвертый – это окончание частных фаз, когда лунный диск сходит с солнечного. При частном затмении второго и третьего контакта быть не может. После первого контакта диск Луны все больше закрывает диск Солнца, и фаза затмения нарастает. В момент наибольшей фазы частного затмения солнечный серп быстро поворачивается. Если до этого момента он был повернут рожками вправо, то после него он обращен рожками влево. Уловив момент поворота солнечного серпа, можно определить то время, когда произошла максимальная фаза затмения. Чаще всего за год бывает 2-3 солнечных затмения, причем одно из них, как правило, полное или кольцеобразное. Наблюдения за солнечным затмением полезны для уточнения теории движения Луны.


Солнце и жизнь на Земле. Проблема: “ Солнце – Земля ”


Солнечное излучение, падающее на Землю, в общем-то очень стабильно, иначе жизнь на Земле подвергалась бы слишком большим температурным перепадам. В настоящее время спутники очень тщательно измерили энергию, излучаемую Солнцем, и показали, что солнечная постоянная не постоянна, а подвержена вариациям в пределах десятых долей процента, причем долгопериодические вариации связаны с солнечным циклом (рис. 8) (Солнечная постоянная - количество солнечной энергии, приходящей на поверхность площадью 1 кв.м, развернутую перпендикулярно солнечным лучам в космосе) От максимума к минимуму солнечная постоянная уменьшается примерно на 0.1%, т.е. во время максимума активности (много пятен на Солнце) оно излучает как бы больше. Такие изменения также могут иметь влияние на земной климат. В Маундеровский минимум (1645-1715) было очень мало пятен. Этот период известен на Земле как малый ледниковый период: в это время было намного холоднее, чем сейчас. В принципе это может быть простым совпадением, но скорее всего, эти события имеют причинную связь.

Глубина проникновения солнечной радиации в атмосферу Земли зависит от длины волны его излучения. К счастью для жизни, оксид азота в тонком слое атмосферы на высоте выше 50 км над поверхностью Земли блокирует очень переменное коротковолновое ультрафиолетовое излучение Солнца. На меньших высотах озон и молекулярный кислород поглощают длинноволновую часть ультрафиолетового излучения, которое также вредно для жизни. Изменения солнечного ультрафиолетового излучения влияют на структуру озонового слоя.

На Землю оказывает воздействие также так называемый солнечный ветер, обусловленный спокойным испусканием коронарной плазмы. Солнечный ветер очень сильно влияет на хвосты комет и даже имеет измеряемые эффекты влияния на траекторию спутников. Заряженные частицы из солнечного ветра ответственны за северные и южные полярные сияния, когда они пронизывают земную атмосферу на высокой скорости и заставляют ее светиться. На рис. 9 изображено северное сияние на Земле (авроральный овал), как оно видно из космоса, снимок сделан с корабля "Space Shuttle". На рис. 10 то же самое явление свечения северного и южного аврорального овала можно наблюдать на Сатурне.

Испускание Солнцем заряженных частиц, которое зависит в основном от условий в слоях, расположенных выше фотосферы, также меняется в цикле солнечной активности. Наибольшее значение среди этих частиц с точки зрения влияния на земные процессы имеют высокоэнергичные протоны, которые выбрасываются при взрывах в солнечной короне (одновременно выбрасываются также высокоэнергичные электроны).

Приходящие к Земле высокоэнергичные солнечные протоны имеют энергии от 10 млн. до 10 млрд. эВ (для сравнения энергия фотона видимого света составляет около 2 эВ). Наиболее энергичные протоны движутся со скоростью, близкой к скорости света, и достигают Земли приблизительно через 8 мин после самых мощных солнечных вспышек. Такие вспышки связаны с колоссальными извержениями в активных областях Солнца, которые резко увеличивают свою яркость в рентгеновском и крайнем ультрафиолетовом диапазонах. Считается, что источником энергии вспышек является быстрое взаимоуничтожение (аннигиляция) сильных магнитных полей, при которой происходит разогрев плазмы и возникают мощные электрические поля, ускоряющие заряженные частицы. Эти частицы способны оказать разнообразное влияние на людей находящихся в этот момент не под защитой земного магнитного поля.

Мощные протонные вспышки являются важным фактором для планирования полетов на гражданских авиалиниях, особенно проходящих в полярных широтах, где силовые линии земного магнитного поля направлены перпендикулярно поверхности Земли и поэтому позволяют заряженным частицам достигать нижних слоев атмосферы (см. рис. 9 и 10 с авроральными овалами на Земле и Сатурне).

Пассажиры в этом случае подвергаются повышенному радиационному облучению. Еще более сильное воздействие такие явления могут оказывать на экипажи космических аппаратов, особенно тех, которые летают на орбитах, проходящих через полюсы. Наблюдалось также влияние протонных вспышек на функционирование вычислительных систем. Так, в августе 1989 года одно такое событие парализовало работу вычислительного центра фондовой биржи в Торонто. В течение солнечного цикла происходит лишь несколько десятков таких мощных вспышек, и их частота значительно выше в его максимуме, чем в минимуме..

Изменения потока плазмы солнечного ветра, обтекающего Землю, приводят к воздействию совсем иного вида. Эта относительно низко энергичная плазма как бы убегает из солнечной короны, преодолевая из-за высокой температуры гравитационное притяжение Солнца. Магнитное поле Земли воздействует на заряженные частицы солнечного ветра и не позволяет им приблизиться к поверхности планеты. Пространство вокруг Земли, в которое в основном не могут проникать частицы солнечного ветра, называют земной магнитосферой. Вспышки и другие резкие изменения магнитных полей на Солнце приводят к возмущениям в солнечном ветре и изменяют давление плазмы на земную магнитосферу. Связанные с воздействием солнечного ветра изменения геомагнитного поля составляют лишь около 0,1% его напряженности, равной приблизительно 1 Гс. Однако индуцируемые даже столь малыми изменениями геомагнитного поля электрические токи в длинных проводниках на поверхности Земли (таких как высоковольтные линии или трубы нефтепроводов) могут приводить к драматическим последствиям. Например, 13 марта1989 г. сильная магнитная буря, вызванная вспышками, связанными с одним из крупнейших, когда либо наблюдавшихся пятен на Солнце, вывела из строя систему электроснабжения всей провинции Квебек.

Часть сильных геомагнитных бурь связана со вспышками, происходящими в активных областях Солнца, и поэтому частота таких бурь возрастает с ростом числа солнечных пятен в магнитном цикле.


Солнце и человек


Долгое время предпринимались многочисленные попытки найти связь между солнечной активностью и погодой, Выдающийся английский астроном Уильям Гершель предположил (совершенно правильно!), что Солнце наиболее ярко светит при максимуме солнечных пятен, а повышение температуры в этот период должно было бы приводить к увеличению урожая пшеницы и соответственно падению цен на нее. В 1801 г. он заявил, что цена на пшеницу действительно коррелирует с циклом солнечных пятен. Корреляция, однако, оказалась недостоверной, и Гершель стал заниматься другими проблемами. Многие такие кажущиеся связи оказались недолговечными, и все они имели тот недостаток, что были скорее статистическими, чем причинными. Никто еще не предложил разумного механизма, посредством которого столь малые изменения солнечной постоянной могли бы ощутимо влиять на земные процессы.

Однако поиск продолжается. В 1987 г. Карин Лабицке из Свободного университета в Берлине сообщила о наиболее убедительной из всех ранее найденных связей. Она обнаружила, что в течение последних 40 лет оттепели зимой в США и Западной Европе очень хорошо коррелируют с солнечным циклом, если принимать во внимание изменение направления стратосферных ветров, происходящее приблизительно каждые два года. Найденное соответствие выдержало многочисленные статистические проверки и объяснило очень мягкую зиму 1988/89 г. в Англии и Западной Европе. Установление физически разумной связи между вариациями солнечной активности и климата явилось бы громадным шагом вперед в понимании взаимосвязи Земли с ее звездой.

Это все показывает, что Солнце имеет огромное влияние на Землю. Однако, тем не менее, это совершенно ничтожное влияние, по сравнению с тем, что случится с Солнцем и Землей через несколько миллиардов лет (см. эволюция Солнца и солнечной системы)...

В России солнечно–земными связями впервые начал заниматься Чижевский А.Л. Чижевский Александр Леонидович (1897-1964) выдающийся и многосторонний ученый, один из основоположников гелиобиологии, активный исследователь влияния солнечной активности на самые различные явления, происходящие на Земле.Именно ему и удалось сделать вполне определенные выводы о тесной взаимосвязи организма человека с окружающей средой, и прежде всего с процессами, происходящими на Солнце. Однако следует отметить, что предпринятые им попытки связать события земной истории (войны, конфликты) с солнечным циклом, не считаются в настоящее время достоверными.

Александр Леонидович Чижевский родился 7 февраля 1897 года. Жил в Калуге и был знаком с К.Э.Циолковским, дружба с которым оказала огромное влияние на его формирование как ученого.

В результате дискуссий с Циолковским Чижевский начинает исследовать проблемы солнечно-земных связей. Уже в 1915 году он выступает с докладом “Периодическое влияние Солнца на биосферу Земли” на заседании калужского общества по изучению природы.

Нестандартные научные взгляды Чижевского вызывали противодействие многих влиятельных ученых, что приводило к его отстранению от работы. В 1942 году ученый был репрессирован и отбывал наказание в лагере на Урале и в Казахстане (1942-50 гг.), где работал в клинических лабораториях над проблемами практической гематологии и гидродинамики крови.

Умер А.Л.Чижевский 20 декабря 1964 года.

Уже после смерти ученого издаются его монографии: “В ритме Солнца” (1969 г.), “Электрические и магнитные свойства эритроцитов” (1973 г.), “Земное эхо солнечных бурь” (1976 г.), “Теория гелиотараксии” (1980 г.).

В прошлые годы тяжелым несчастьем для людей были эпидемии чумы, холеры, тифа. Чума, названная “ черной смертью ”, вихрем проносилась над нашей планетой, уничтожая миллионы людей. И вот А.Л.Чижевский, изучая исторические документы, сопоставил даты наибольших эпидемий чумы с моментами максимумов солнечной активности за промежуток почти 2000 лет. Оказалось, что вспышки этого заболевания приходились преимущественно на годы высокой активности Солнца.

На протяжении всей первой половины второго тысячалетия холера свирепствовала лишь в Юго-Восточной Азии. Однако в ХIХ веке волна заболеваний холерой шесть раз прокатилась почти по всей Земле. Из анализа статистических данных следует, что разгар эпидемии почти всегда совпадал с максимумом солнечной активности.

А.Л.Чижевский обнаружил также, что число заболеваний возвратным тифом наибольшее в первый год после максимума солнечной активности. Сейчас, конечно, благодаря прививкам эта картина выглядит не столь отчетливо. Примерно такова же динамика заболеваний скарлатиной и дифтеритом.

Как заметил В.М.Ягодинский в своей книге “ Космически путь биосферы ” (М.: Знание, 1975 г.), крайне загадочной является история проказы. В Европе в ХIII в. насчитывалось около 2 млн больных этой грозной болезнью. Однако в последующие столетия их количество существенно уменьшилось, и до конца XVII в. проказа практически исчезла с территории Европы. Однако сто лет назад она опять здесь появилась, и если это заболевание как-то связано с тысячелетним циклом активности, то приходится ожидать, что количество больных ею со временем будет увеличиваться.

Механизмы влияния окружающей среды на человеческий организм несомненноразнообразны. В целом можно утверждать, что в ритме с прцессами, происходящими, скажем, на Солнце, в определенной степени изменяются функции отдельных его систем, изменяются защитные свойства организма, иногда понижаются барьеры, которыми организм зашищает себя от несущих ему болезнь микробов.

Например, заражение кишечными и капельными инфекциями происходит через ротовую полость и носоглотку. Здесь важным барьером является слюна, способная довольно быстро растворять микроорганизмы, убивать их. И вот оказалось, что это столь ценное свойство слюны зависит от процессов, происходящих на Солнце: в минимуме солнечной активности оно существенно больше, чем в максимуме.

Определенным образом солнечная активность “ регулирует ”и кислотность желудочного сока: чем больше числот Вольфа W, тем меньше в желудочном соке соляной кислоты. Становится понятным, почему возбудители холеры, которым “ по вкусу ” щелочная среда, легче попадают в кишечный тракт именно в годы максимума солнечной активности.

Всем известны также бактерицидные свойства крови, обусловленные присутствием в ней лейкоцитов и сложных белковых соединений – антител. По некоторым данным, в максимуме солнечной активности способность сыворотки крови растворять микроорганизмы на 30 % меньше, чем в минимуме.

В ритме с интенсивностью проявлений солнечной активности изменяется способность крови образовывать тромбы и растворять их: с ростом числа пятен активность фибринолиза ( способности растворять тромбы ) уменьшается…

Конечно, все это требует проверки и перепроверки, ведь на человеческий организм одновременно действуют сотни самых различных факторов. Нет сомнения, однако, что возникшее в глубокой древности представление о воздкействии на человека процессов, происходящих, образно говоря, далеко от его жилища, содержат крупицу истины.

Литература и информация в сети


Сайты


sai.msu/apod

seds/nineplanets/nineplanets/sol.html

windows.umich.edu

sohowww.nascom.nasa.gov

stardust.jpl.nasa.gov/comets/ulysses.html


Книги и статьи


Б.А.Воронцов- Вельяминов. Астрономия 11. Учебник для общеобразовательных учебных заведений. Москва. Дрофа, 2001

В.П.Цесевич. Что и как наблюдать на небе. Москва. “ Наука ”, 1984.

П.И.Бакулин, В.И.Мороз, Э.В.Кононович, Курс общей астрономии.

Москва. Наука, 1977.

И.А.Климишин. Элементарная астрономия. Москва. “ Наука ”, 1991.

Э.Гибсон. Спокойное Солнце. Москва. “Мир”. 1977

Энциклопедический словарь юного астронома. Сост. Н.П.Ерпылев. Москва.”Педагогика”. 1997.

П.Фоукал. Переменное Солнце. В мире науки. 4, 1990

А.Азимов. Вселенная. “Мир”. 1969.

К.У.Аллен. Астрофизические величины. Москва, Мир, 1977.

34


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: