Галактики

переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек, т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра галактики и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной. Из центральной области галактики распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, галактика сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения галактики. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.

  Вопросы эволюции галактики в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов галактики. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего «разбегания» в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советский астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.

Проблема происхождения и развития звёзд в галактике является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в галактике и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара —звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.

  Предполагается, что галактика в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее «поколение» звёзд, образовавшее диск галактики, оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий.


Заключение


Еще задолго до того, как были установлены огром­ные расстояния до галактик, человечество постоянно задавалось вопросом: «есть ли граница мира и если есть, то что за ней?». Учение о мире как целом составляет предмет космологии. По этому поводу вправе высказываться и философия, и математика, в которой трактуется понятие бесконечности, и астрономия, изучающая конкретные небесные тела. Вопрос этот оказывается очень сложным и многогранным. Фило­софия диалектического материализма утверждает, что материя и ее движение вечны, хотя и меняют форму. В бесконечном многообразии явлений в природе, яв­лений всегда материальных, теперь едва ли сомне­вается кто-либо из естествоиспытателей, хотя защит­ники идеализма и пытаются всякое новое, еще не по­нятное явление природы истолковать идеалистически. В этом они терпят, однако, неудачу с каждым про­движением науки вперед. Сейчас, по-видимому, мало кто из ученых допускает, чтобы Вселенная имела гра­ницу — «стенку», в которую можно упереться. Одна­ко вопрос о том, конечна ли Вселенная и каковы свойства пространства, в котором мы живем, мож­но попытаться проверить путем наблюдений в Космосе.7

В школе изучают евклидово пространство, в ко­тором две прямые никогда не пересекаются. Но наш великий математик Лобачевский показал, что мысли­мо пространство с другими свойствами. Позднее Эйн­штейн доказал в своей теории относительности, что реальное физическое, а не абстрактное пространство, заполненное материей, может иметь кривизну, обус­ловленную существованием материи. Советский уче­ный А. А. Фридман, а за ним другие ученые математи­чески разработали модели вселенных, опирающихся на теорию относительности. Таких моделей создано немало и большинство их — это модели безграничной, но конечной Вселенной. Сочетание безграничности и в то же время конечности поясняют обычно на гру­бом примере шара. У него нет границ для двухмерного существа, могущего перемещаться только по поверх­ности шара. В то же время размер поверхности шара конечен. Размеры шара могут увеличиваться, умень­шаться или пульсировать, оставаясь конечными.

Свойства конечной Вселенной теоретически зави­сят от средней плотности вещества в ней, от степени однородности этой плотности от места к месту. Обра­щаясь к наблюдения, мы можем изучать пока толь­ко часть Метагалактики, которую часто и неоснова­тельно отождествляют со Вселенной в целом.8

Мы узнали, что галактики удаляются друг от дру­га, судя по красному смещению в их спектрах, и тем быстрее, чем они друг от друга дальше. Мы имеем некоторые сведения о массах галактик и об их рас­пределении в пространстве. Очевидно, Метагалактика расширяется, но какая модель Вселенной больше все­го на это похожа? Оказывается, что это можно вы­яснить, если установить связь величины красного смещения с расстоянием до галактики, если его опре­делить другим независимым путем (а не по величине того же красного смещения. Для той же цели может служить и распределение очень далеких галактик (или источников радиоизлучения) в пространстве.9 Расстояние до скоплений галактик, как мы говорили, можно определить по видимому блеску ярчайших га­лактик в них. Результаты наблюдений сравниваются с выводами теории для разных моделей Вселенной. Современное наше проникновение в глубину Метага­лактики и точность наших данных еще недостаточны для уверенного, окончательного вывода. Все же боль­шинство ученых склоняется сейчас к выводу, что Ме­тагалактика конечна и расширяется с замедлением, которое создает взаимное тяготение. Вероятно, су­ществует пульсация если не Вселенной, то Метагалак­тики, и когда-либо расширение сменится сжатием.

Из факта расширения Метагалактики можно сде­лать вывод, что несколько миллиардов лет назад ее объем был так мал, что галактики не могли существо­вать как отдельные объекты. Это, конечно, не озна­чает, что тогда и было «сотворение мира», как хотят заключить идеалисты. Просто тогда вещество сущест­вовало в иной форме. Возможности превращения ве­щества безграничны и оно не всегда было и не всегда будет существовать в тех видах, в каких мы наблю­даем его вокруг себя сейчас.


Список литературы


Гулыга А.В. Кант. - 2-е изд. - М., Мол. гвардия, 1981.

Данлоп С. Азбука звездного неба. М., “Мир”, 1990.

ЗасоваА.В. «Космология и наблюдения». М., 1985.

Зельманова А.Л. «Метагалактика и Вселенная». М., 1982.

История астрономии: Пер. с англ. / А. Панненкук.—М.: Наука, 1966.—592 с.: ил.

Кант И. Сочинения в шести томах. М., 1963 - 1966.,Т.2.

Киппенхан р. 100 миллиардов солнц. М., “Мир”, 1990.

Нарский И.С. Кант. М., 1976.

О системах галактики / М. Б. Сизов.—М.: Прометей, 1992.—16 с.

Происхождение и эволюция Земли и других планет Солнечной системы / А. А. Маракушев.—М.: Наука, 1992.—204 с.

Физическая модель Вселенной / Б. П. Иванов.—СПб.: Политехника, 2000.—312 с.

Эволюция солнечной системы: Пер. с англ. / Х. Альвен, Г. Аррениус.—М.: Мир, 1979.—511 с.

Энциклопедический словарь астронома., М., “Педагогика” , 1980.

1 Кант И. Сочинения в шести томах. М., 1963 - 1966.,Т.2, стр.256.

2 Нарский И.С. Кант. М., 1976.,стр.97-98.

3 Гулыга А.В. Кант. - 2-е изд. - М., Мол. гвардия, 1981.,стр.44.

4 Киппенхан р. 100 миллиардов солнц. Москва., “Мир”, 1990 г.,стр.311.

5 Журнал “Земля и Вселенная” 1/92 ; 1/91 ; 5/92 .

6 Энциклопедический словарь астронома., Москва, “Педагогика” , 1980 г., стр.347.

7 Данлоп С. Азбука звездного неба., Москва, “Мир”, 1990 г.,стр.56-57.

8 Киппенхан р. 100 миллиардов солнц. Москва., “Мир”, 1990 г.,стр.112.

9 ЗасоваА.В. «Космология и наблюдения».,Москва, в № 4 журнала «Земля и Вселенная» за 1985 г., стр.24.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: