Xreferat.com » Рефераты по биологии » Динамическое поведение мембранных систем и липидно-белковые взаимодействия

Динамическое поведение мембранных систем и липидно-белковые взаимодействия

/>
Эта гидродинамическая модель не позволяет описывать диффузию липидных зондов, поскольку к ним неприменимо допущение о том, что белок диффундирует в сплошной среде. Для объяснения поведения липидов применялись различные модели, основанные на концепции свободного объема. В рамках этих моделей диффузия рассматривается как процесс движения молекул в полостях, образующихся вследствие спонтанных флуктуации, при этом определяющей характеристикой мембран является отношение площади, приходящейся на одну молекулу липида, к минимальной Удельной площади, соответствующей максимально плотной упаковке липидов, т. е. плотность упаковки липидов. Как мы уже отмечали, скорость вращения флуоресцентных зондов зависит от плотности упаковки липидов в мембране. Применимость этой модели к описанию вращательной или поступательной диффузии липидов строго не доказана, поскольку изначально она была построена для неассоциированных жидкостей, к которым можно отнести далеко не все мембранные липидные структуры. Тем не менее обратная зависимость между скоростью поступательной диффузии липидов и плотностью упаковки липидов в мембранном бислое обычно существует.

Наконец, несколько подходов использовалось для теоретического объяснения влияния мембранных белков на латеральную диффузию белков и липидов в мембране. Дело в том, что белки оказываются на пути диффундирующих молекул и вынуждают их перемещаться только в пространстве, не занятом белками. Обычно из-за этого коэффициенты поступательной диффузии в биомембранах оказываются примерно в 10 раз меньше, чем в чисто липидных бислоях.


4.2 Примеры латеральной диффузии компонентов мембран


Коэффициенты поступательной диффузии некоторых мембранных липидов и белков приведены в табл. 5.2. Коэффициенты диффузии флуоресцентных меток и аналогов липидов в фосфолипидных мультибислоях или в крупных однослойных везикулах равен 10"8 см2/с. При изучении поведения этих же зондов в разнообразных природных мембранах коэффициент диффузии обычно оказывается примерно в 10 раз меньше. Этот феномен, как правило, объясняют присутствием в биомембранах белков, препятствующих латеральной диффузии. Скорость латеральной диффузии фосфолипидов с разными полярными головками различается слабо, однако в реконструированных везикулах гангли-озиды диффундируют медленнее. При переходе мембранного бислоя в состояние геля скорость латеральной диффузии уменьшается более чем на два порядка {D < 10" 10 см2/с). В жидком бислое модельных мембран и в биомембранах липиды обычно диффундируют свободно, хотя имеются редкие исключения.

Совсем иначе обстоит дело с латеральной диффузией мембранных белков. Исследование поведения нескольких белков в реконструированных везикулах, пока не позволяющее сделать окончательные выводы, тем не менее указывает на то, что коэффициенты поступательной диффузии белков разных размеров очень близки и что белки диффундируют лишь немного медленее, чем липиды. Исследованные белки сильно различались по числу трансмембранных сегментов и по степени ассоциированности, и тем не менее диффундировали с одинаковой скоростью. Модель Саффмана—Дельбрюка предсказывает очень слабую зависимость скорости диффузии от размеров молекул. В реконструированных везикулах с высоким содержанием белка могут происходить агрегация последнего и латеральное разделение фаз, приводящие к иммобилизации части белка.

В биомембранах коэффициенты латеральной диффузии белков обычно в 100—1000 раз меньше, чем в модельных системах с низкой концентрацией белка. Например, родопсин, по-видимому, свободно диффундирует в биомембране— D = 4-10"9 см2/с. Поскольку мембраны, содержащие родопсин, характеризуются высоким отношением белок/липид, ясно, что обычно наблюдаемая медленная диффузия других мембранных белков не может быть обусловлена исключительно присутствием белков в бислое. Есть и еще один интересный факт: восстановление флуоресценции в экспериментах FRAP происходит не полностью и нередко составляет менее 75%. Это означает, что часть изучаемой популяции белков ^ неподвижна.

Вопрос о том, что ограничивает латеральную диффузию мембранных белков, имеет ключевое значение. Маловероятно, что это обусловлено агрегацией мембранных белков, поскольку для объяснения большинства данных потребовалось бы предположить, что образуются слишком крупные агрегаты. Одно из возможных объяснений состоит в том, что мембранные белки,малоподвижны, поскольку связаны с внеклеточным матриксом или с ци-тоскелетом. Обнаружилось, что, оказывая воздействие на внеклеточный матрикс, можно влиять на латеральную диффузию мембранных белков, однако имеются и другие данные, согласно которым эта связь не столь уж важна.

О взаимодействиях между мембранными белками и элементами цитоскелета, ответственных за некоторые из наблюдаемых ограничений латеральной диффузии белков, свидетельствуют разные данные. Белок полосы 3 в мембранах эритроцитов в норме в основном неподвижен, но в клетках с недостатком спектрина его латеральная подвижность возрастает по меньшей мере в 40 раз. При нарушениях цитоскелета в тенях эритроцитов латеральная диффузия белка полосы 3 также возрастает. Проводились опыты по изучению диффузии ацетилхолиновых рецепторов во вздутиях в мембранах, где связь с актином и элементами цитоскелета нарушена. Подвижность белка в таких системах была гораздо выше, чем в клетках с интактным цитоскелетом. Тем не менее, гипотезу о том, что низкая подвижность мембранных белков обусловлена их связью с цитоскелетом, нельзя считать бесспорной.

Известен по крайней мере один случай, когда взаимодействия с цитоскелетом не сказываются на латеральной диффузии. G-белок вируса везикулярного стоматита находится в плазматической мембране инфицированных животных клеток и имеет единственный трансмембранный сегмент. Были получены мутантные формы этого белка, у которых цитоплазматический домен отсутствовал. Ни для одного из мутантов не наблюдалась быстрая латеральная диффузия, которая характерна для мембранных белков, встроенных в искусственные бислои. Эти результаты свидетельствуют о том, что прямые взаимодействия между данным белком и цитоплазматическими белками не приводят к уменьшению латеральной подвижности.

Наконец, следует отметить, что с помощью метода FRAP, используемого в большинстве этих экспериментов, была зарегистрирована диффузия на расстояние от нескольких сотен А до 1 мкм. Белок может свободно диффундировать внутри небольшого домена, но встречать препятствия на своем пути в присутствии других интегральных или периферических белков, и при использовании метода FRAP будет считаться неподвижным. Кроме того, если бы взаимодействие между мембранными белками и белками цитоскелета было относительно слабым и частота их ассоциации и диссоциации была достаточно высока, белок мог бы перепрыгивать с одного сайта связывания на другой. В результате суммарная скорость латеральной диффузии уменьшилась бы, поскольку белок большую часть времени находился бы в связанном с цитоскелетом состоянии, но скорость движения белка между сайтами связывания была бы высока. Образование кластеров мембранных белков за счет притяжения между ними также приводит к уменьшению латеральной диффузии.

5. Липидно-белковые взаимодействия


Большинство методов, применяемых для изучения упорядоченности и динамических свойств мембран, используется и для исследования липидно-белковых взаимодействий. Работы по изучению этих взаимодействий были в основном направлены на выяснение влияния мембранных белков на физическое состояние липидов. Рассмотрим типичную мембрану с весовым соотношением липид/белок = 1:1. При средней мол. массе белка 50 кДа молярное соотношение липид/белок составляет -60:1 при условии, что присутствуют только фосфолипиды. Для сравнения укажем, что соответствующие соотношения для мембраны наружного сегмента палочки сетчатки и саркоплазматического ретикулума составляют по оценкам 75:1 и 110:1. Если белок представляет собой цилиндр, выступающий за пределы бислоя с обеих сторон примерно на 10 А, то его радиус должен составлять около 18 А. Молекула фосфолипида в жидкой мембране занимает площадь ~60А2, что соответствует радиусу головки ~4,4 А, и для того, чтобы полностью окружить белок, иа каждой стороне бислоя должно находиться около 16 таких молекул липидов. Следовательно, согласно этой модели, в любой момент времени около 50% липидов должно соседствовать с белковыми молекулами. Однако белком занято 35% площади поверхности мембраны, и даже учитывая сугубо приближенный характер этой модели, можно понять, что физические методы регистрации состояния липидов должны учитывать влияние белков на свойства биомембран.

Чтобы выяснить структуру и функции мембран, необходимо прежде всего ответить на следующие вопросы: 1) насколько прочно связаны внутримембранные белки с липидами и какова природа ли-пидного слоя, прилегающего к белку? 2) как далеко простирается влияние мембранных белков на укладку и динамические свойства мембранных липидов? 3) как влияют липиды на структуру и функции внутримембранных белков? 4) как периферические мембранные белки, связанные с поверхностью бислоя, взаимодействуют с липидами и влияют на их поведение?


5.1 Связывание липидов с внутримембранными белками в бислое


Этой теме были посвящены многочисленные исследования, в которых использовались разнообразные подходы. По существу во всех этих работах ставилась задача выяснить, есть ли у белков участки, специфически взаимодействующие с определенными липидами, и можно ли считать белково-липидные комплексы долгоживущими, т. е. обладают ли они временем жизни, сравнимым с временем оборота типичного фермента. Такие исследования проводились с помощью Н-ЯМР, ЭПР и флуоресцентных методов. Чтобы разобраться в полученных результатах, полезно рассмотреть термодинамику простой реакции обмена, где липид одного типа вытесняется с места связывания на белке другим липидом:


Динамическое поведение мембранных систем и липидно-белковые взаимодействия


Константа равновесия этой реакции равна


Динамическое поведение мембранных систем и липидно-белковые взаимодействия


Она является относительной константой связывания липидов Li и L2 с данным участком белковой молекулы, причем


Динамическое поведение мембранных систем и липидно-белковые взаимодействия

Если липиды двух типов присутствуют в мембране в одинаковой концентрации и сродство их к белку одинаково, то К = 1. Рассмотрим гипотетический случай, когда L2 является минорным липидным компонентом и составляет только 5°/о от общего количества липидов. Тогда


Динамическое поведение мембранных систем и липидно-белковые взаимодействия


Предположим, что L2 предпочтительно связывается с неким участком белковой молекулы, так что в равновесии 90% участков занято L.2. Тогда


Динамическое поведение мембранных систем и липидно-белковые взаимодействия


Следовательно, К = 171, что соответствует величине ДС° = = -3,1 ккал/моль. Столь небольшого различия в свободной энергии связывания оказывается достаточно для существенного смещения распределения липидов, связанных с белком, от равновесного состояния. Это обусловлено тем, что соотношение эффективных концентраций конкурирующих липидов в мембране относительно мало: не превышает 100, а в большинстве случаев гораздо меньше. Другими словами, даже минорные липиды присутствуют в мембране в концентрации, составляющей не менее 1% от концентрации основных липидов, с которыми они конкурируют за места связывания на белках.

Для оценки относительного сродства липидов к специфическим белкам используют два подхода. Они основаны на применении липидных аналогов, встроенных в фосфолипидные везикулы, которые содержат интересующий исследователя белок.

1. Спин-меченные фосфолипиды, соседствующие с мембранными белками, обладают ограниченной подвижностью. Это проявляется в уширении спектра ЭПР. У тех молекул ЭПР-зонда, которые соседствуют с белком, возможность движения с характерной частотой > 108 с" 1 существенно ограничена. Спектр ЭПР в этом случае может быть представлен в виде суммы двух компонент: компоненты с узкими спектральными линиями, соответствующей основной липидной фазе, и компоненты, отвечающей липидам с ограниченной подвижностью. Для того чтобы эта последняя была в спектре преобладающей, отношение белок/липид должно быть достаточно высоким. Осложняет картину то, что липиды могут попадать в «ловушки» из белковых агрегатов. Такие липиды тоже обладают ограниченной подвижностью, и им соответствует третья компонента в спектре ЭПР. Для выявления попавших в ловушку липидов при высоких концентрациях белка можно использовать липидные спиновые зонды, ковалентно связанные с поверхностью белка.

2. Спин-меченные и бромированные липидные производные способны тушить флуоресценцию триптофана, входящего в состав мембранных белков. Эффективность тушения зависит от расстояния между липидным производным и остатком триптофана, и присутствие таких липидов в слое, непосредственно прилегающем к белку, приведет к тушению флуоресценции белка. Относительную способность этих липидов связываться с белком в присутствии различных конкурирующих липидов можно исследовать путем измерения интенсивности флуоресценции белка.

Анализ экспериментальных данных, но на практике такие измерения трудно осуществить. Как правило, считается, что все места связывания одинаковы. В одном из вариантов исследуют связывание небольшого количества спин-меченного липида данного типа в присутствии большого количества липида другого типа. При этом снимаются спектры образцов с разным соотношением между липидами и белками. В предположении, что имеется N одинаковых мест связывания, выполняется следующее соотношение. Трудности здесь могут возникнуть из-за гетерогенности мест связывания как по сродству к липидам, так и по способности связанных липидов тушить флуоресценцию триптофана. Однако флуоресцентный метод имеет то преимущество, что при высоких значениях отношения липид/белок агрегация белка создает меньшие проблемы, чем при использовании метода ЭПР.

Необходимо помнить, что ни один из методов, используемых для нахождения относительных констант связывания липидов с мембранными белками, не пригоден для определения небольших количеств мест связывания с высоким сродством, поэтому тот факт, что такие места этими методами не обнаружены, вовсе не означает, что они отсутствуют.

Некоторые белки проявляют избирательность при связывании с фосфолипидами, несущими различные полярные головки

Избирательность связывания с липидами была изучена только для небольшого числа белков, в частности для цитохром с-оксидазы митохондрий, Na+/К+ -АТРазы, Са2 + -АТРазы из саркоплазматического ретикулума и родопсина позвоночных у животных. Как правило, избирательность связывания весьма слаба, при этом максимальное значение К близко к 5. Тем не менее, этого достаточно для того, чтобы имелось значительное различие в связывании липидов с разными белками, зависящее от концентрации липидов разных типов, присутствующих в мембране.

Одна молекула родопсина связывается примерно с 24 липидными молекулами, отдавая лишь очень небольшое предпочтение кардиолипину перед фосфатидилхолином.

Ыа + /К+-АТРаза из Squalus acanthus связывается примерно с 60 фосфолипидными молекулами, отдавая предпочтение отрицательно заряженным липидам по сравнению с фосфатидилхолином: для кардиолипина К = 3,8, для фосфа-тидилсерина К = 1,7, для фосфатидной кислоты К = 1,5. Фосфатидилэтаноламин и фосфатидилглицерол связываются с этим белком с одинаковым сродством. Предпочтение кислым липидам не может быть обусловлено чисто электростатическими эффектами. Какова биохимическая роль такого предпочтения — неизвестно.

Цитохром с-оксидаза связывает от 40 до 55 молекул липидов. Этот фермент отдает предпочтение кардиолипину по сравнению с фосфатидилхолином. Как правило, при очистке митохондриальной цитохром с-оксидазы она выделяется вместе с кардиолипином. Высказывалось предположение, что у этого фермента имеется небольшое число мест связывания, обладающих высоким сродством к этому липиду, и что последний необходим для обеспечения его каталитической активности. Для выяснения биологической роли предпочтительного связывания кардиолипина необходимо провести дальнейшие исследования. Кроме того, поскольку кардиолипин является димерным фосфолипидом, возникают трудности при анализе данных по конкурентному связыванию.

4. Са2 + -АТРаза привлекла внимание ученых в связи с тем, что, как предполагается, ее ферментативная активность определяется так называемым «липидным кольцом», или «пограничным липидным слоем», непосредственно примыкающим к белку. Активность Са2 + -АТРазы не зависела от содержания холестерола в реконструированных везикулах, а чистый холестерол тоже не оказывал никакого влияния на ее активность. Это наводило на мысль, что холестерол в указанном пограничном слое отсутствует. Однако работы по связыванию свидетельствовали об обратном, а дело было в том, что относительная константа связывания холестерола с белком примерно вдвое меньше, чем для фосфатидилхолина. Небольшое количество холестерола присутствует и в природных мембранах, содержащих данный фермент. Относительное сродство Са2 + -АТРазы к фосфо-липидам почти не зависит от природы полярной головки, а также типа ацильных цепей, хотя при реконструкции фермента с разными липидами ферментативная активность существенно варьирует.

Скорость обмена пограничных липидов со свободными липидами

Термин «пограничный липидный слой» был введен в связи с появлением идеи о существовании стационарного слоя липида, связанного с поверхностью белка, например цитохромокси-дазы. Под «стационарностью» понимается отсутствие обмена липидов за время, сравнимое со временем оборота фермента, т. е. ~ 10 ~3 с, поэтому такой фермент вместе с его непосредственным окружением может рассматриваться как долгоживущий комплекс. Во всех изученных к настоящему времени случаях это условие не выполняется, но термин «пограничный липидный слой» остается полезным описательным термином, если речь идет о ближайшем липидном окружении белка.

Данные 2Н-ЯМР четко показали, что пограничные липиды быстро обмениваются с основной массой липидов в бислое. Спектры ЭПР меченых фосфолипидов свидетельствуют о существовании свободных и связанных липидных компонентов, в то же время аналогичные эксперименты с дейтерированными липидными зондами говорят о том, что организация и динамические свойства липидов в присутствии таких белков, как цитохромоксидаза, практически не изменяются. Такое расхождение, по-видимому, объясняется различиями в характерных временах измерения двух методов. Время обмена пограничных липидов составляет 10"6— 10 7 с, поэтому метод 2Н-ЯМР выявляет только один тип липидов, тогда как данные ЭПР свидетельствуют о наличии двух разных липидных популяций.

Если коэффициент латеральной диффузии фосфолипидов в мембранном бислое равен величине, приведенной в табл. 5.2, то среднее время перескока липидной молекулы из одного положения в мембране в соседнее составляет около 10"7 с. Наличие такого быстрого обмена между пограничными и свободными липидами позволяет предположить, что в известных нам случаях липиды, находящиеся по соседству с белком, и свободные липиды практически равноценны. Необходимо подчеркнуть, что это только грубые оценки, полученные для относительно небольшого числа белков, главным образом производных фосфатидилхолина.

5.2 Изменения в липидном бислое, связанные с присутствием интегральных мембранных белков


Результаты большинства исследований липидных бислоев методом 2Н-ЯМР с применением дейтерированных фосфолипидов свидетельствуют о том, что белки оказывают лишь слабое влияние на упорядоченность липидов в бислое и их динамические свойства. Сходные данные были получены методами 'Н-, l9F- и 3|Р-ЯМР. Имеются сообщения о существовании пограничных липидов в природных мембранах. Эти данные получены методом 3,Р-ЯМР и предполагают иммобилизацию полярных головок дол-гоживущими липидно-белковыми комплексами. Однако эти факты нельзя считать окончательно установленными. Так, из данных ЯМР можно сделать следующие общие выводы: 1) скорость обмена между пограничными и свободными липидами весьма велика; 2) в присутствии белков упорядоченность связанных липидов почти не изменяется; 3) скорость переориентации ацильных цепей в присутствии белков слабо уменьшается в частотном диапазоне 109с~'; 4) соседство с трансмембранными белками не сказывается существенным образом на ориентации и динамических свойствах полярных головок. По данным ЯМР, организация и динамика липидов при контактировании с белками очень слабо, но изменяются. Это связывают с некой «жесткостью» поверхности белка, контактирующего с липидом, но сами эффекты весьма незначительны.

Влияние мембранных белков на липидные бислои исследовали и многими другими методами. Рассмотрим вкратце некоторые из полученных результатов.

1. Подвижность спин-меченных липидов ограничивается при контактировании их с белками или при захвате липидно-белковыми агрегатами. В большинстве ЯМР-исследований по релаксации сходные эффекты в том же частотном диапазоне не обнаруживаются. Возможно, эти эффекты обусловлены присутствием объемной нитроксидной спиновой метки. Однако, по крайней мере, в одном случае и данные ЯМР, и данные ЭПР свидетельствовали об уменьшении подвижности ацильных цепей в этом временном диапазоне при липидно-белковых взаимодействиях. Единого мнения о том, влияет ли белок на подвижность спиновых меток за пределами пограничного липидного слоя, не выработано. О существовании некоего липидного слоя за пределами пограничного слоя свидетельствовали спектроскопические данные; эти данные объяснялись в предположении, что имеется единый липидный слой, подверженный воздействию белков. В любом случае важно помнить, что методом ЯМР значительные ограничения подвижности обычно не выявляются.

Деполяризация флуоресценции мембранных зондов, например ДФГ, зависит от присутствия интегральных мембранных Щелков. По мере встраивания белков в бислой микровязкость последнего возрастет, о чем свидетельствуют поляризационные данные в стационарных условиях. Для согласования экспериментальных данных с представлением о том, что ограничение подвижности испытывают только зонды, соседствующие с белком, использовалось простое моделирование. Однако детальный анализ, Включавший измерения анизотропии образцов во времени, в одном случае показал, что а) влияние белка проявляется в основном в увеличении параметра упорядоченности, т. е. в ограничении диапазона Движения, и б) данный эффект распространяется за пределы пограничного слоя. Однако эффекты, наблюдаемые при работе с этими зондами, не обязательно будут характерны для фосфолипидов.

Для определения конфигурации ацильной цепи использовался Метод инфракрасной спектроскопии с фурье-преобразованием. Полученные результаты согласовывались с данными 2Н-ЯМР и свидетельствовали о незначительном изменении упорядоченности ацильной цепи в присутствии белка. Природа наблюдаемых эффектов зависит от свойств ацильной цепи, поэтому построение какой-то общей модели затруднено {34]. Использование дейтерированных препаратов позволяет избирательно изучать различные липиды; так, было выявлено преимущественное взаимодействие между гликофорином и фосфатидилсерином.

4. Для изучения температурного фазового перехода в липидах и влияния мембранных белков на этот переход использовалась дифференциальная сканирующая калориметрия. Вообще говоря, в присутствии интегральных мембранных белков происходят: а) весьма незначительное уменьшение температуры фазового перехода; б) увеличение ширины интервала перехода и в) уменьшение АН перехода. Если в присутствии белка наблюдается только один фазовый переход, то его относят к липидам, которые не подвергаются влиянию белков. Белок как бы изолирует связанные с ними липиды и предотвращает их участие в фазовом переходе. Это приводит к уменьшению молярной энтальпии перехода. Обычно АН0 уменьшается с увеличением содержания белка линейно, что позволяет легко найти число липидных молекул, связанных с одной молекулой белка. Это число варьирует от примерно 20 для бактериородопсина до 685 для белка полосы 3. Сюда входят не только молекулы пограничных липидов, но и липиды, захваченные белковыми агрегатами, находящиеся в обогащенных белком доменах, а также, возможно, липиды, претерпевшие изменения из-за взаимодействий с углеводными цепями гликопротеинов. Латеральное разделение фаз и агрегация белков затрудняют использование этого подхода для получения подробной информации о липидно-белковых взаимодействиях. Однако изучение влияния белков на температурные переходы бинарных смесей липидов позволило выявить преимущественные взаимодействия между гликофорином и фосфатидилсерином и между цитохром с-оксидазой и кардиолипином.

В некоторых случаях были зарегистрированы дополнительные индуцированные белком фазовые переходы в липидах. Возможно, эти липиды содержатся в обогащенных белками доменах, а может быть, наблюдаемый эффект связан с влиянием изолированных белковых молекул белка на липиды, не принадлежащие пограничному слою.

Влияние белков на полиморфизм фосфолипидов

Некоторые белки оказывают сильное влияние на полиморфизм фосфолипидов, стабилизируя ламеллярные или гексагональные формы. Этот факт представляет интерес в связи с гипотезой о том, что инвертированные гексагональные цилиндры или липидные частицы играют какую-то роль в перемещении липидов через мембранный бислой и в слиянии мембран. В присутствии гидрофобного полипептида грамицидина А при соотношении липид/ белок, равном 10:1, диолеилфосфатидилхолин переходит из бислойной структуры в гексагональную Нц-фазу. При этом, по-видимому, происходит агрегация грамицидина и последующая дегидратация липидов, стабилизирующая гексагональную фазу. Напротив, гликофорин стабилизирует бислойную конфигурацию диолеилфосфатидилэтаноламина, в то время как обычно этот липид находится в гексагональной Нц-фазе. На полиморфизм кардиолипина влияют положительно заряженные белки, например кардиотоксин, цитохром с. В связывании кардиотоксина участвуют как электростатические, так и гидрофобные силы, как и в случае белков, связывающихся с поверхностью мембраны.

Возможная роль упругих деформаций бислоя, обусловленных белками

Искажения в структуре бислоя, о которых шла речь в предыдущем разделе, в большинстве своем возникают при точном соответствии ацильных цепей липидов форме белковой молекулы, при этом налагаются некоторые ограничения на определенные быстрые движения липидных молекул, соседствующих с белком. Такие искажения распространяются на очень небольшие расстояния, лишь немного выходя за рамки пограничного слоя. Интересно было бы рассмотреть более серьезные возмущения, при которых белки, встраиваясь в бислой, производят более существенные изменения в липидном бислое. Некоторые возмущения такого рода представлены на рис. 5.7. В принципе деформации, индуцируемые в бислое, могут распространяться на значительные расстояния, так реорганизуя липиды и/или белковые компоненты, что система переходит в наиболее стабильное состояние. Было разработано несколько теоретических подходов к исследованию этого вопроса, но, к сожалению, экспериментальные данные весьма немногочисленны.

1. Белок в форме клина или белок, проникающий только в один монослой, изменяет наклон ацильных цепей липидных молекул в одном или обоих слоях мембраны. Это изменение может распространяться на большие расстояния от белка и влиять на взаимодействия липидов с другими мембранными белками. Возникающие при этом напряжения в бислое могут сниматься благодаря реорганизации липидов. Например, липиды с относительно небольшими полярными головками могут группироваться вокруг белковой молекулы. Одним из преимуществ многокомпетентности мембраны может быть оптимизация упаковки липидов


Динамическое поведение мембранных систем и липидно-белковые взаимодействия

вокруг отдельных мембранных белков, уменьшающая возможные деформации на границе белок—липид.

Другой тип деформаций, возникающих при встраивании белка в мембрану, — это латеральные искривления. Примером такого белка может служить «непрочно» связывающаяся форма цитохрома.

Еще одной причиной деформаций бислоя может служить несоответствие между размером данного гидрофобного участка бислоя и толщиной мембраны. Чтобы избежать экспонирования гидрофобных областей в воду, белок или липиды могут частично изменить свою конформацию. Если белок не деформируется, то может произойти следующее: а) или ацильные цепи, или белковая молекула наклоняются относительно нормали к бислою на угол, зависящий от толщины мембраны. Это предположение было в одном случае подвергнуто проверке и не нашло подтверждения; б) ацильные цепи липидов деформируются; в) в гетерогенной смеси липидов последние реорганизуются таким образом, что молекулы «неправильной» длины оказываются сгруппированными вокруг белка.

В принципе подобные упругие деформации могут индуцировать специфические взаимодействия липидов с определенными белками для уменьшения искажений в структуре бислоя путем подгонки формы и размера этих молекул, а не за счет специфических химических взаимодействий. Однако эксперментальные данные на этот счет отсутствуют. Кроме того, простирающиеся на большие расстояния деформации могут влиять на белок-белковые ассоциаты. Экспериментальные подтверждения этому были получены в результате наблюдения с помощью электронной микроскопии за распределением бактериородопсина и родопсина в реконструированных фосфолипидных везикулах при разной толщине мембраны. Адаптированный к темноте родопсин действительно агрегировал в результате изменения наклона ацильных цепей липидов при внедрении фермента в бислой, слишком толстый для идеальной упаковки вокруг белка.

5.3 Динамические свойства остова мембранных белков и их боковых цепей


Проводя ЯМР-исследования твердых образцов, можно получить детальную информацию о динамических свойствах отдельных аминокислотных остатков мембранных белков. Однако при этом необходимы большие количества препарата равномерно меченного белка. Наиболее информативным этот метод является в случае небольших белков, когда можно проводить спектроскопические измерения. Возможности этих методов иллюстрируют работы по исследованию белков оболочки нитевидных бактериофагов. При вирусной инфекции эти белки встраиваются в плазматическую мембрану Е. соН с помощью единственной трансмембранной спирали, а во время сборки фага липиды и белки клетки-хозяина исключаются из его оболочки. Малый размер белков оболочки, возможность получения их в больших количествах и легкость выделения создают значительные преимущества при их изучении методом ЯМР, а также другими методами.

Для исследования динамических свойств аминокислотных остатков белка оболочки фага fd в реконструированных фосфолипидных бислоях использовались методы 2Н- и 15N-flMP. Результаты показали, что полипептидный остов на участке от 5-го до 43-го остатков включительно относительно жесткий, при этом данный сегмент превосходит по длине участок, находящийся внутри липидного бислоя. Несколько остатков на концах полипептида свободны и могут совершать движения с большой амплитудой. Большинство боковых цепей в состоянии совершать такие движения, даже когда соответствующие остатки находятся внутри бислоя.

Работы, в которых использовались упомянутые методы, слишком немногочисленны для того, чтобы можно было составить полное представление о характере влияния липидно-белковых взаимодействий на внутреннюю динамику мембранных белков.

5.4 Связывание периферических мембранных белков с липидным бислоем


При изучении липидно-белковых взаимодействий основное внимание уделялось трансмембранным белкам, однако в последнее время проявляется все больший интерес к связыванию с бислоем периферических мембранных белков. Многие такие белки связываются с мембраной главным образом через взаимодействие с интегральными белками. Но существует большая группа разнообразных белков, которые связываются непосредственно с поверхностью липидного бислоя. Некоторые из этих белков, например основный белок миелиновой оболочки, спектрин и матриксный белок вируса везикулярного стоматита, играют в основном структурную роль. Множество растворимых белков связываются с поверхностью мембраны на непродолжительное время или при специфических условиях. В некоторых случаях связывание белка является необходимым условием проявления его ферментативной активности; такими белками являются, например, протеинкиназа С, факторы свертывания крови, пируватоксидаза. Еще одним примером белков, связывающихся с поверхностью бислоя, служат амфифильные пептидные гормоны и, возможно, сигнальные последовательности, которые ответственны за перемещение секретируемых или мембранных белков в нужное место.

По-видимому, существует два основных, не исключающих друг друга типа связывания белков с липидами: 1) связывание осуществляется при участии амфифильной структурной единицы, обычно а-спирали. Эта вторичная структура может индуцироваться и стабилизироваться при взаимодействии с липидами; 2) связывание имеет в основном электростатическую природу и осуществляется при участии положительно заряженного участка белковой молекулы и кислых фосфолипидов. При этом значительную роль могут играть гидрофобные взаимодействия, зависящие от того, насколько глубоко белок проникает в бислой. Во многих случаях для связывания с кислыми фосфолипидами необходим Са2 +, но истинная роль этого двухвалентного катиона точно не определена.

Взаимодействие периферических мембранных белков с фосфолипидами изучали многими методами. Так, за связыванием белков с везикулами можно следить с помощью светорассеяния или путем измерения флуоресценции белков, при этом можно определить константы диссоциации. Возмущения в бислое, вызванные связыванием с ним белков, можно выявить по изменению проницаемости везикул или параметров температурного фазового перехода липидов, хотя анализировать эти результаты на молекулярном уровне довольно трудно. Весьма полезным оказалось также изучение монослоев, при этом степень проникновения белка в монослой можно оценить по изменению площади поверхности монослоя после внедрения белка.

Для получения детальной информации на молекулярном уровне одним из наиболее ценных методов оказался ЯМР. С помощью ЯМР были детально проанализированы последствия взаимодействия липидного бислоя с основным белком миелиновой оболочки и цитохромом с. Оба этих белка взаимодействуют с кислыми липидами главным образом электростатически, хотя физиологическая роль такого взаимодействия цитохрома с с липидами неясна. В отличие от трансмембранных белков два указанных периферических белка значительно различаются по взаимодействию с фосфолипидами. Так, при изучении везикул, содержащих димиристоил-фосфатидилглицерол и фосфатидилхолин, обнаружилось, что основный белок миелиновой оболочки специфически взаимодействует с первым из этих липидов. Исследования методом инфракрасной спектроскопии с фурье-преобразованием показывают, что при связывании с фосфатидилглицеролом белок приобретает высокоупорядоченную вторичную структуру; в основном

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: