Xreferat.com » Рефераты по физике » Физика (Шпаргалка)

Физика (Шпаргалка)

_ _ _ _

(2) - Е2 Е2=E2n+E2


Для применения теор. о циркул. нужно выбрать замкн. контур. В качестве замкнутого контура выбираем прямоугольник стороны котор. границе раздела , высота h0.

АВ=CD=а

Направление обхода по часовой стрелке.

ѓЕd=0 L=ABCD

L

В каждой точке на расст AB E1  этому участку.

Поэтому циркуляция E1 на AB равна

B D

ѓЕd=E1d- E2d=0

L A C

E1a - E2a=0

a0

3) E1=E2

У вектора напряженности поля при переходе через границу раздела двух диэлектриков не меняется тангенциальная состовля-ющая.

D1/10=D2/20

Используя 3) и связь между

_ _

D и E получим:

  1. D1/10=D2/20 - 4-ое условие .

На границе раздела двух диэлектриков тангенц.

_

сoставл. D изменися.

1,2,3,4 - условия позволяют правельно построить картину линий поля.

Закон преломления линий поля.

tg2=D2 /D2n td1=D1/D1n

tg2/tg1= D2D1n/ D2nD1= =D2 /D1=2/1

5) tg2/tg1=2/1 - зак. преломления линий поля.

Угол больше в той среде где больше.

Из 5) следует гуще линии поля располож. В диэлектрике где больше.


2< 1

Построить картину линий поля.


Активные диэлектрики.

(диэлектрики с особыми поляризационными свойства-ми.)

Мы рассматривали поляриза-цию однородных , изотроп-ных диэлектриков.

_ _

Ю=ж0Е

ж=const

При Е=0 у большенства диэл. Ю =0. (поляризация исчезает)

Сущ. диэлектрики с нелинейной зависемостью.

_ _

Ю от Е.

_ _

Ю ж0Е

2) Ю = f(E)

Это первый тип диэл. с особыми свойствами предста-вляет собой класс сигме-нтодиэлектриков.

У сигментодиэлектриков 2) представляет собой петлю гистерезиса.


Петля гистерезиса 1,2,3,4,5,6,1

Область 0,1 - область первич-

ной поляризации.

_ _

При уменьшении Е вектор Ю

убывоет по кривой 1,2,3.

_

При Е=0 в диэлектрике сох-

раняется остаточная поляри-

_

зация Ю 0.

_

Ю =0 в т. 3 т.е. при внеш. поле обратного направления.


Лекция.

Постоянный ток.

Проводимость металлов и газов.

Электрический ток - направленное движение зарядов.

Носители заряда - заряды создающие ток.

В электролитах - ионы

металлах - электроны

газах - ионы и электроны.

Проходимостью тока - назв. прохождение зарядов через вещество.

Типы проводимости - ионная , электронная , смешанная.

Независимо от вида проводимости для тока приняты следующие характеристики:

  1. I - сила тока.

  2. j - плотность тока.

Сила тока - физ. вел. численно равная заряду переносимому через поперечное сечение проводника за 1 с. (скалярная вел.)

[ I ]=A

  1. I=q/A

1А = сила тока при прохождении которого через поперечное сечение проводника в 1 с переносится заряд в 1 Кл.

А - четвертая основная единица в Си.

Направлением тока считают направление положительных зарядов.

Если сила тока постоянна и направление постоянно , то говорят о постоянном токе.
(1) - справедлива для постоянного тока.

Если сила тока меняется со временем то (1) запис. следующую 2) i=dq/dt.

На основании (2) можно получить кол- во заряда переносимого через поперечное сечение проводника за единицу времени dq=idt.

t

3) q=i(t)dt

0

Плотность тока - векторная характеристика.

По определению постоянного тока плотность тока равна

_

4) j=I/S S- току

Плотность тока - физ. вел. численно равная заряду переносимому за 1с через единичную площадку поперечного сечения расположенного току.

Если ток меняется 5) j=di/dS

формула 5) дает возможность находить силу тока.

6) di=jdS=jndS

интегрируем лев. и прав. часть.

_ _

7) i=jndS =jdS

S S

Из 7) следует что сила меняющегося тоеа численно = потоку вектора плотности тока через площадь поперечного сечения.

Единицей плотности тока явл. А/м2.

Связь между плотностью тока и скор. направленного движения носителей тока.

В любом веществе проводящем ток носители тока учавствуют в непрерывном чаотич. движ.

т=<>cр т- тепловая скор.

Направленное движ. это движение которое налагается на хаотич. тепл. движ. и вынуждает носителей двигаться в определенном направлении.

<>cр- ср. знач. скор. направленного движ.

Плотность тока явл. функцией. j=f(n, qэл, <>)

1) j= qэлn<>

Для док. рассмотрим проводник постоянного сечения цилиндрич. формы.


n - число носителей тока

qэл- известно

  1. j=I/S=q/St

q - вел. заряда переносимого через попереч. сечение S за время t.

=<>

V=S=<>S

qv= qэлnV - через S за 1с.

q=qvt

Подставим в 2)

i= qэлnVSt/St _ _

Отсюда следует j=qэлn<>

Условия существования тока.

Источники тока.

Э.Д.С. источника тока.

Необходимые усл. сущ. тока.:

1) наличие носителей тока

2) наличие сил вынуждающих носителей тока двигаться

3) наличие разности потенциалов вдоль поверхности проводника.

Рассм. отрезок проводника.


Для длительного поддержания тока необходимо какимто образом положительные носители тока с конца 2 перенести на торец 1.

Движение носителей тока внутри образца происходит под действ. силы электрич. природы.

Движение зарядов прекратится очень быстро: положительные скапливаются на конце 2.

Перенос зарядов из 2 в 1 осуществить невозможно (это означало бы движения (+) против Е ).

Такой перенос можно осуществить только с помощью силы другой природы не электрич. происхождения.

Этот перенос реализует устройство называемое источником тока.

За счет действия источника тока внутри проводника появл. электрич. поле напряженностью Е.

Поскольку Е поверх. проводника , то поверх. проводника не явл. эквипотонц.

2<1

2 -1=

Источ. тока независ. от принципа работы характеризует - Э.Д.С. и r - внутр. сопротивл.

Э.Д.С. - называют работу совершаемую сторонними силами по перемещению единич. полож. зар. на замкнутом участке цепи.

1) =A*/q

[]=B

Втор. определение Э.Д.С.

2

A=q(2 -1)=qЕd

1

2

2) A*=A1,2*= qЕ*d

1

E* - напряженность поля сторонних сил.

E*=F*/q

Подставим 2 в 1.

2

3) =Е*d

1

Для замкн. цепи в 3) нужно взять контурный интеграл.


4)=ѓЕ*d

L

Э.Д.С. - в замкнутой цепи = циркуляции вектора напряженности поля сторонних сил.

Зак. Ома в интегральной форме.

(обобщенный закон)

I=(2 -1)/R=U/R

R=(/S) для цилиндрич проводников.

 - удельное сопротивление.

U=2 -1 совпадают только для однородного участка цепи.

На осн. зак. сохр. энерг. можно получить зак. Ома в

общей форме, из которого следуют частные случаи.

Обобщенный закон Ома -

закон для неоднородного участка цепи.

Неоднородный участок - участок содержащий источник тока.


I=((2 -1))/R1,2 - обобщенный закон.

R1,2=R+ r

Со знаком + берется тогда кокда сила тока от + к - .

Со знаком - тогда когда о - к +.

(2 -1) =U

Рассм. частный случай.

1) случай =0

I=(2 -1)/R=U/R

2) случай: замкнутая цепь

1=2 2 -1=0

3) I=/(R+r)

Зак. Ома в дифференциальной форме.

Рассм. проводник переменного сечения.


Выделим внутри элементарный объем , длинна - d , площадь поперечн. сечения dS.

dR=(d/dS)

Выделим объем соответствующей однородному участку цепи.

dI=dU/dR

dI=dU/((d/dS))

dI/dS=(1/)(dU/d)

j=(1/)E

1/ =- удельная проводимость.

_ _

J=E плотность тока в данн. точке проводника = произведению удел. Проводимости этого проводника на напряженность в этой же точке. C учетом сторонних сил для неоднородн. участка цепи зак. Ома будет:

_ _ _

j=(E+E*)

Лекция.

Дополнительные оапределения Э.Д.С.

Для замкн. цепи зак. Ома будет

I=/(R+r)

III)=IR+Ir

IR - падение внеш. напряжения.

Ir - падение внутр. напряжения.

Электродвижущая сила источника тока = сумме падений напряжения на внеш. сопр. и на внутр. участке.

Из III можно прийти к заключению что если R>>r (источник тока разомкнут) R.

IV) =IR Э.Д.С.= напряжению на клемах разомкнутого тока.

Газовый разряд.

Ионизация. Рекомбинация газов.

Газы явл. диэлектрками , и в обычных условиях не проводят эл. ток.

Все газы сост. из нейтральных атомов и малекул.

Если каким либо образом создать носители тока в газах , то они станут проводниками.(ионизация).

: УФ , R - лучи , - изл. ,  частицы - внешние ионизаторы.

Ионизация - это превращение нейтральных атомов и малекул в ионы.

Электроны в атомах удерживаются силами куллоновск. притяжения.

Для удаления электрона необходимо сообщить энергию равную или превышающую энергию его связи с ядром (инергия ионизации Ei).

Ei =от 5 до 20 эВ


Электрон и ион могут перемещаться под действ. эл. поля.

Свободн. электроны сталкиваясь с нейтральными атомами может войти в его состав создавая отрицательный ион.

В результате ионизации возник. 3 вида носителей тока: +ион , -ион , электрон.

Возникают два направленных друг к другу встречных потока образующие эл. ток.

Одновременно с ионизацией в газе происходит рекомбинация газа заключающаяся в исчезновении носителей тока.

Под действием внешнего ионизатора мощностью n.

(показавает сколько электронов образуется в 1 м3 за 1с.)

1) В нач. момент времени И>Р.

2) Спустя некоторое время И=Р n+=n_ устанавливается равновесие концетрации носителей тока n.

3) После выключения. И<Р

спустя время n=0.

При выполнении ситуации 2) прохождение эл. тока через газы назв. газовыми разрядами.

Число рекомбинирующих ионов в единицу времени в 1м3 оказывается пропорциональным концентрации полож. и отр. Ионов.

nr = rn2 r - коэфф. рекомбинации.

В ситуации 2 ni =nr

ni = rn2

1) n=(ni /r)

Различают два вида газовых разрядов.

1) несомостоятельный

2) самостоятельный.

Несамостоятельный разряд - такой разряд для поддержки которого необходим внеш. ионизатор.

Самостоятельный разряд - разряд без внешнего ионизатора.

Вольтамперная характеристика газового разряда.

Зак. Ома для газового рязряда.

Прохождение тока через газы удобно изучать с помощью схемы.


Для того чтобы существовал ток для газового ионизатора нужен внеш. ионизатор.


В области 1 с увеличением U прямо пропорционально растет сила тока.

В области 1 справедлив закон Ома для газов.

В обл. 2 наблюдается отклонение от прмолин. завис. и от зак. Ома.

Обл. 3 - обл. насыщения : все носители тока падают на электроны.

Обл. 1 - обл. слабых полей.

j=j++j_ j+qэлn+<+>i

В равновесии qэл(+)=(-)=e в силу преимущества однократной ионизации.

n+=n_=n

j=en(<+>+<_>)

Опыт показывает что скор. напр. движ. зависит от вел. напряженности эл. поля и подвижности.

+=b+E

_=b_E

+,_ - подвижность носителей тока.

+>b_ b=/E

Подвижность - это физ. вел. числ. = скор. упорядоч. движ. носителей тока под действием эл. поля единичной напряженности.

[b]=м2/(Вс)

1) j=en(b++b_ )E - зак. Ома.

Произведение равновесной концентрации на элементар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.

2) j=E

=en(b++b_ ) =1/

 - удельная проводимость

3) jн=enid

d - расст. между электродами.

ni - мощность ионизатора.

Ударная ионизация.

Самостоятельный газовый разряд.

При больших напр. поля свобод. электроны ускоряются до таких энергий которых достаточно для электронным ударом.


В обл. 4 в нутри газа появл. собственный источник ионизации , ударной ионизации.

Число электронов резко возрастает.

Лавинообразный процесс.

В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.

При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.

В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практически без изменения Е.

Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.

Типы самостоятельных газовых разрядов.

1) тлеющий

2) искровой

3) дуговой

4) коронный

(в Трафимовой)

Зак. Джоуля - Ленца в интегральной и диффер. форме.

На внеш. сопротивлении в любой электрической цепи выделяется кол - во теплоты.

1) Q=I2Rt

За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (интегральная форма)

Получим зак. в диффер. форме.

Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSd


dR= d/dS

Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.

2) dQ=j(dS)2(d/dS)dt

(dQ/dVdt)=j2

3)т=j2 j=E

т =2E2=(1/)2E2

3) т =E2

Работа и мощьность тока, КПД тока.

=А*/q A=q=It

полная мощность источника тока P=A*/t=I

P=I( IR­+Ir)=I2R+I2r

P=Pполез+Pбезполезн

=Pполез/P

Основные положения КЭТ.

1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.

2) Все металлы имеют кристаллич. структуру, в основе которой лежит кристаллич. решётка кубич. формы с положит. ионами в узлах. Таким образом решётка прозрач. для эл-нов.

3) Своб. эл-ны, оторванные от атомов, становятся коллективной собственностью всего металла. Они соверш. хаотич. тепл. движение. При этом эл-ны ведут себя подобно одноатомным мол-лам идеал. газа, подчиняясь статистике Максвелла. Своб. эл-ны принято назыв. “электронным газом”. Для эл-нов по ф-ле, известной из МКТ можно определить сред. скор. теплового движения:

Vт=(8KT)/(m)105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.

5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. V « VT

Оценим V по ф-ле j=qэлnV=enV

V=j/(en); n~1029м-3, j(Cu)=107А/м2

V~10-3м/с. Суммарн. скор.VVVT

Поскольку V « VT, то VVT

Закон Ома в КЭТ

Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enV. Пусть к проводнику приложено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=consta=const.

F=eE=ma (по II з-ну Ньют.). a=(eE)/m

Для равноуск. движ. Vt=V0+at

ср. длина своб. пробега l~d расст. между ионами; -время своб. пробега.

Скорость электрона

V=Vmax=a - до столкновения с ионом

V0=0 - после столкновения с ионом

V(V0+Vmax)/2=Vmax/2=(a/2=(eE/2m;

lVlV;

VeE)/2m] · lV;

j=enV=[(e2nE)/2m]·lVз-н Ома в КЭТ

j=E ne2l) / (2mV)

Закон Джоуля-Ленца в КЭТ

Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.

За 1 сек. эл-н может испытывать Z соударений, где Z = 1/=V l. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столкновений каждого из них W=nZW1=T.

T=[(mV2max)/2]·n·Z=[ne2l/2mV]E2

Затруднения КЭТ

1) Температурная зависимость проводников. Согласно экспер. данным сопр. металлов увелич. с температурой по з-ну R=R0+T, где R0-сопр. при T=273K, град-1. Для ф-ла аналогична +T. Согл. опыта ~T. =2mVTl~VT. На осн. КЭТ след. T, т.е. теория расходится с опытом.

2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.

Электронный газ, на самом деле подчиняется не классической статистике Максвелла, а квантовой статистике. Затруднения устраняются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяется при высоких темп-рах и малых концентрациях.

Электромагнетизм

Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнитное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создаваемые в веществах движущимися эл-нами называют микротоками.

Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.

Для исслед. магн. поля применяют магн.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: