Экспериментальные исследования диэлектрических свойств материалов.
Нижегородский Государственный Технический Университет.
Лабораторная работа по физике №2-30.
Экспериментальные исследования диэлектрических
свойств материалов.
Выполнил студент
Группы 99 – ЭТУ
Наумов Антон Николаевич
Проверил:
Н. Новгород 2000г.
Цель работы: определение диэлектрической проницаемости и поляризационных характеристик различных диэлектриков, изучение электрических свойств полей, в них исследование линейности и дисперсии диэлектрических свойств материалов.
Теоретическая часть:
Схема экспериментальной установки.
Собираем схему, изображенную на РИС. 1. Ставим переключатель SA в положение 1. Подготавливаем к работе и включаем приборы. Подаем с генератора сигнал частоты f=60 кГц и напряжением U=5 В, затем по вольтметру PV1 установить напряжение U1=5 В. Далее, вращая подвижную пластину, измеряем напряжение U2 для конденсатора без диэлектрика и 4-x конденсаторов с диэлектриками одинаковой толщины. При этом напряжение U1 поддерживаем постоянным.
Напряженность
поля между
пластинами
в вакууме Е0
вычисляется
по формуле:
где
При внесении
пластины в это
поле диэлектрик
поляризуется
и на его поверхности
появляются
связанные
заряды с поверхностной
плотностью
.
Эти заряды
создают в диэлектрике
поле
,
направленное
против внешнего
поля
,
и имеет величину:
.
Результирующее
поле:
.
В электрическом
поле вектор
поляризации:
,
где c
- диэлектрическая
восприимчивость
вещества. Связь
модуля вектора
поляризации
с плотностью
связанных
зарядов:
.
относительная
диэлектрическая
проницаемость
диэлектрика.
Вектор электрической
индукции
.
Этот вектор
определяется
только свободными
зарядами и
вычисляется
как
.
В рассматриваемой
задаче на поверхности
диэлектрика
их нет. Вектор
D
связан с вектором
Е следующим
соотношением
.
Экспериментальная часть:
В
данной работе
используются
формулы:
,
где S
- площадь пластины
конденсатора,
d -
расстояние
между ними.
Диэлектрическая
проницаемость
материала:
.
Для емкости
конденсатора
имеем:
,
где U1
- напряжение
на RC
цепи, U2
- напряжение
на сопротивлении
R,
f -
частота переменного
сигнала. В плоском
конденсаторе
напряженность
связана с напряжением
U1
как:
Опыт №1. Измерение диэлектрической проницаемости и характеристик поляризации материалов.
U1= 5В, R=120Ом, f=60 кГц, d=0,002м.
Материал |
U2, мВ |
Воздух |
40 |
Стеклотекстолит |
97 |
Фторопласт |
61 |
Гетинакс |
89 |
Оргстекло |
76 |
СВ =176
пкФ; ССТ
=429 пкФ;
СФП=270 пкФ; СГН=393 пкФ; СОС=336 пкФ;
;
;
;
;
Для гетинакса подсчитаем:
;
;
;
;
;
;
;
;
Расчет погрешностей:
;
;
;
;
;
(так как
).
;
Опыт № 2. Исследование зависимости e = f(E).
R=120Ом, f=60 кГц, d=0,002м.
U1, В |
U2, В (воздух) |
U2, В (гетинакс) |
С0, пкФ |
С, пкФ |
Е, В/м |
e |
1 |
0,009 |
0,019 |
200 |
420 |
500 |
2,10 |
2 |
0,016 |
0,036 |
177 |
398 |
1000 |
2,24 |
3 |
0,025 |
0,052 |
184 |
387 |
1500 |
2,09 |
4 |
0,031 |
0,070 |
171 |
384 |
2000 |
2,26 |
5 |
0,039 |
0,086 |
172 |
380 |
2500 |
2,21 |
График зависимости e = f(E) - приблизительно прямая, так как диэлектрическая проницаемость не зависит от внешнего поля.
Опыт № 3. Исследование зависимости диэлектрической проницаемости среды от частоты внешнего поля.
U1= 5В, R=120Ом.
f, кГц |
U2, В (воздух) |
U2, В (гетинакс) |
ХС, кОм (гетинакс) |
С0, пкФ |
С, пкФ |
e |
20 |
0,015 |
0,030 |
20,0 |
199 |
398 |
2,00 |
40 |
0,029 |
0,059 |
10,2 |
192 |
391 |
2,04 |
60 |
0,041 |
0,089 |
6,7 |
181 |
393 |
2,07 |
80 |
0,051 |
0,115 |
5,2 |
169 |
381 |
2,25 |
100 |
0,068 |
0,146 |
4,1 |
180 |
387 |
2,15 |
120 |
0,078 |
0,171 |
3,5 |
172 |
378 |
2,18 |
140 |
0,090 |
0,197 |
3,0 |
181 |
373 |
2,18 |
160 |
0,101 |
0,223 |
2,7 |
167 |
370 |
2,21 |
180 |
0,115 |
0,254 |
2,4 |
169 |
374 |
2,21 |
200 |
0,125 |
0,281 |
2,2 |
166 |
372 |
2,24 |
По графику зависимости e = F(f) видно, что диэлектрическая проницаемость среды не зависит от частоты внешнего поля. График зависимости ХС=F(1/f) подтверждает, что емкостное сопротивление зависит от 1/f прямо пропорционально.
Опыт № 4. Исследование зависимости емкости конденсатора от угла перекрытия диэлектрика верхней пластиной.
U1= 5В, R=120Ом, f=60 кГц, d=0,002м, r=0,06м, n=18.
a,0 |
U2,В |
С, пкФ |
Стеор, пкФ |
0 |
0,039 |
172 |
150 |
10 |
0,048 |
212 |
181 |
20 |
0,056 |
248 |
212 |
30 |
0,063 |
279 |
243 |
40 |
0,072 |
318 |
273 |
50 |
0,080 |
354 |
304 |
60 |
0,089 |
393 |
335 |
Опыт № 5. Измерение толщины диэлектрической прокладки.
U1= 5В, R=120Ом, f=60 кГц.
Схема конденсатора с частичным заполнением диэлектриком.
U2 (стеклотекстолит тонкий)=0,051В,
U2 (стеклотекстолит толстый)=0,093В,
U2 (воздух)=0,039В.
С0 =172пкФ - без диэлектрика;
С1 = 411пкФ - стеклотекстолит толстый;
С1 = 225пкФ - стеклотекстолит тонкий.
;
;
;
;
;
;
;
Вывод: На этой работе мы определили диэлектрическую проницаемость и поляризационные характеристики различных диэлектриков, изучили электрические свойства полей, в них исследовали линейность и дисперсность диэлектрических свойств материалов.