Xreferat.com » Рефераты по физике » Материалы оптоэлектроники. Полупроводниковые светоизлучающие структуры

Материалы оптоэлектроники. Полупроводниковые светоизлучающие структуры

 1Министерство науки, высшей школы и технической политики РФ

 1Московский Государственный Институт Электроники и Математики


 1Факультет Электронной Техники


 1Кафедра - Материаловедение

 1электронной техники


 1РЕФЕРАТ


 1на тему 3 Материалы оптоэлектроники.

 3Полупроводниковые светоизлучающие структуры. 0


 1Выполнил студент группы И-41

 1Офров С.Г


 1Руководитель Петров В.С.


 1Реферат защищён с оценкой _________


_____________________________

(подпись преподавателя, дата)


 1Москва 1994

 ш0

.


- 1 -


Материалы оптоэлектроники.

Полупроводниковые светоизлучающие структуры.


1. ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ.


1.1. Предмет оптоэлектроники.


Оптоэлектроника представляет собой раздел науки и техники,

занимающийся вопросами генерации, переноса (передачи и приёма),

переработки (преобразования), запоминания и хранения информации

на основе использования двойных (электрических и оптических) ме-

тодов и средств.

Оптоэлектронный прибор - это (по рекомендации МЭК) прибор,

чувствительный к электромагнитному излучению в видимой, инфра-

красной или ультрафиолетовой областях; или прибор, излучающий и

преобразующий некогерентное или когерентное излучение в этих же

спектральных областях; или прибор, использующий такое электро-

магнитное излучение для своей работы.

Обычно подразумевается также "твердотельность" оптоэлек-

тронных приборов и устройств или такая их структура (в случае

использования газов и жидкостей), которая допускала бы реализа-

цию с применением методов современной интегральной техники в

микроминиатюрном исполнении. Таким образом, оптоэлектроника ба-

зируется на достижениях целого ряда достижений науки и техники,

среди которых должны быть выделены прежде всего квантовая элек-

троника, фотоэлектроника, полупроводниковая электроника и техно-

логия, а также нелинейная оптика, электрооптика, голография, во-

локонная оптика.


- 2 -


Принципиальные особенности оптоэлектронных устройств связа-

ны с тем, что в качестве носителя информации в них наряду с

электронами выступают электрически нейтральные фотоны. Этим

обуславливаются их основные достоинства:

1. Высокая информационная ёмкость оптического канала.

2. Острая направленность излучения.

3. Возможность двойной модуляции светового луча - не только

временной, но и пространственной.

4. Бесконтактность, "элетропассивность" фотонных связей.

5. Возможность простого оперирования со зрительно восприни-

маемыми образами.

Эти уникальные особенности открывают перед оптоэлектронными

приборами очень широкие возможности применения в качестве эле-

ментов связи, индикаторных приборов, различных датчиков. Тем са-

мым оптоэлектроника вносит свою, очень значительную, долю в

комплексную микроминиатюризацию радиоэлектронной аппаратуры.

Дальнейшее развитие и совершенствование средств оптоэлектроники

служит техническим фундаментом разработки сверхвыскопроизводи-

тельных вычислительных комплексов, запоминающих устройств ги-

гантской ёмкости, высокоскоростной связи, твердотельного телеви-

дения и инфравидения.

Основу практически любой оптоэлектронной системы составляет

источник излучения: именно его свойства и определяют, в первую

очередь, лицо этой системы. А все источники можно подразделить

на две большие группы: с когерентным (лазеры) и с некогерентным

(светоизлучающие диоды и др.) излучением. Устройства с использо-

ванием когерентного или некогерентного света обычно резко отли-

чаются друг от друга по важнейшим характеристикам.


- 3 -


Всё это оправдывает использование таких терминов как "коге-

рентная оптоэлектроника" и "некогерентная оптоэлектроника". Ес-

тественно, что чёткую грань провести невозможно, но различия

между ними очень существенны.

История оптоэлектроники ведёт своё начало с открытия опти-

ческого квантового генератора - лазера (1960 г.). Примерно в то

же время (50-60-е гг.) получили достаточно широкое распростране-

ние светоизлучающие диоды, полупроводниковые фотоприёмники, уст-

ройства управления световым лучом и другие элементы оптоэлектро-

ники.


1.2. Генерация света.


Оптический диапазон составляют электромагнитные волны, дли-

ны которых простираются от 1 мм до 1 нм. Оптический диапазон за-

мечателен тем, что именно в нём наиболее отчётливо проявляется

корпускулярно-волновой дуализм; энергия фотона и соответствующие

ей частота колебаний и длина волны света связаны следующими со-

отношениями:

 ш1 7

 7)

 7n 0[Гц] = 3 77 010 514 0/ 7l 0[мкм] 7 2

 78

 7e 4ф 0[эВ] = 1,234/ 7l 0[мкм] 7 2

 70

 ш0

При известной удельной мощности P плотность фотонного пото-

ка N определяется выражением

N[м 5-2 0с 5-1 0] = 5,035 77 010 512 77l 0[мкм] 77 0P[мкВт 77 0м 5-2 0].


Все светогенерационные эффекты относят либо к тепловому из-

лучению, либо к одному из видов люминесценции. Спектр излучения


- 4 -


нагретого тела определяется формулой Планка, которая для так на-

зываемого абсолютно чёрного тела имеет вид

f( 7l 0,T) = 2 7p7 0h 77 0c 52 77l 5-5 0[ exp(hc/(kT 7l 0)) - 1] 5-1 0,

где h, c, k - известные универсальные константы; T - абсолютная

температура. При достаточно высоких температурах (>2500...3500 К)

часть спектра теплового излучения приходится на видимую область.

При этом, однако, всегда значителен длинноволновый "хвост".

Люминесценция представляет собой излучение, характеризующе-

еся тем, что его мощность превышает интенсивность теплового из-

лучения при данной температуре ("холодное" свечение).

Известно, что электроны в атоме могут находиться в ряде

дискретных энергетических состояний, при тепловом равновесии они

занимают наинизшие уровни. В люминесцирующем веществе за счёт

энергии того или иного внешнего воздействия часть электронов пе-

реходит на более высокие энергетические уровни E 42 0. Возвращение

этих электронов на равновесный уровень E 41 0 сопровождается испус-

канием фотонов с длиной волны, определяемой простым соотношением:

 ш1

1,23

 7l 0 = ───────────── [мкм]

(E 42 0 - E 41 0)[эВ]

 ш0


Физика люминесценции предопределяет две примечательные осо-

бенности процесса: узкий спектр излучения и возможность исполь-

зования большого числа способов возбуждения. В оптоэлектронике

главным образом используются электролюминесценция (пробой и ин-

жекция p-n перехода в полупроводниках), а также фото- и катодо-

люминесценция (бомбардировка люминофора быстрыми электронами).


При распространении световых лучей важную роль играет диф-

ракция, обусловленная волновой природой света и приводящая, в


- 5 -


частности, к тому, что выделенный с помощью оптической системы

параллельный пучок становится расходящимся, причём угол расходи-

мости близок к  7f 4D 0 = 7 l 0/D , где D - апертура (диаметр луча света).

Дифракционный предел разрешающей способности оптических систем

соизмерим с 7 l 0, а плотность записи информации с помощью световых

потоков не может превысить 7 l 5-2 0.

В веществе с показателем преломления n скорость распростра-

нения светового луча становится c/n, а поскольку величина n за-

висит от длины волны (как правило, растёт с уменьшением 7 l 0), то

это обуславливает дисперсию.


1.3. Источники излучения.


Оптоэлектроника базируется на двух основных видах излучате-

лей: лазерах (когерентное излучение) и светоизлучающих диодах

(некогерентное излучение).

В оптоэлектронике находят применение маломощные газовые,

твердотельные и полупроводниковые лазеры. Разрежённость газового

наполнения в рабочем объёме обусловливает высокую степень монох-

роматичности, одномодовость, стабильность частоты, острую на-

правленность и, в конечном счёте, когерентность излучения. В то

же время значительные габариты, низкий к.п.д., прочие недостатки

газоразрядных приборов не позволяют рассматривать этот вид ОКГ

как универсальный оптоэлектронный элемент.

Значительные мощности излучения твердотельных лазеров обус-

лавливают перспективность применения этих генераторов в дально-

действующих волоконнооптических линиях связи.

Наибольший интерес для разнообразных оптоэлектронных приме-


- 6 -


нений представляют полупроводниковые лазеры благодаря высокому

к.п.д., малым габаритам, высокому быстродействию, простоте уп-

равления. Особенно выделяются гетеролазеры на основе тройного

полупроводникового соединения Ga Al As. В их структуре тонкий

слой n-типа проводимости "зажат" между областями n- и p-типов

того же материала, но с большими значениями концентраций алюми-

ния и соответственно этому большими ширинами запрещённой зоны. В

роли резонатора может также выступать поверхностная дифракцион-

ная решётка, выполняющая функцию распределённой оптической об-

ратной связи.

Для оптоэлектроники особый интерес представляют полупровод-

никовые излучатели - инжекционные (светодиоды) и электролюминес-

центные (электролюминофоры). В первых излучение появляется в ре-

зультате рекомбинации дырок с инжектированными через pn-переход

электронами. Чем больше ток через светодиод, тем ярче его высве-

чивание. В зависимости от материала диода и примесей в нём меня-

ется цвет генерируемого излучения: красный, жёлтый, зелёный, си-

ний (соединения галия с фосфором и азотом, кремния с углеродом и

пр., см. табл.1). Светодиоды на основе соединения галия с мышь-

яком генерируют невидимое излучение с длиной волны 0,9...0,92

мкм. На этой длине волны кремниевые фотоприёмники имеют макси-

мальную чувствительность. Для светодиодов характерны малые раз-

меры (0,3 7& 00,3 мм), большие срок службы (до 100 тыс. ч.) и быст-

родействие (10 5-6 0...10 5-9 0 с), низкие рабочие напряжения (1,6...3,5

В) и токи (10...100 мА).


.


- 7 -


 ш1.5

 Л+

Таблица 1. Основные материалы для светодиодов.

╔════════════╤══════╤══════════╤═════════╤═════════════════╗

║ Полупро- │  4o 0  5  0│ Цвет │Эффектив-│ Быстродействие, ║

║ водник │  7l 0,A │ │ность, % │ нс ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaAs │ 9500 │ ИК │ 12; 50 5* 0 │ 10 5-7 0...10 5-6 0 ║

║ │ 9000 │ │ 2 │ 10 5-9 0...10 5-8 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaP │ 6900 │ Красный │ 7 │ 10 5-7 0...10 5-6 0 ║

║ │ 5500 │ Зелёный │ 0,7 │ 10 5-7 0...10 5-6 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaN │ 5200 │ Зелёный │ 0,01 │ ║

║ │ 4400 │ Голубой │ 0,005 │ ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ GaAs 41-x 0P 4x 0 │ 6600 │ Красный │ 0,5 │ 3 77 010 5-8 0 ║

║ │ 6100 │ Янтарный │ 0,04 │ 3 77 010 5-8 0 ║

╟────────────┼──────┼──────────┼─────────┼─────────────────╢

║ Ga 41-x 0Al 4x 0As │ 8000 │ ИК │ 12 │ 10 5-8 0 ║

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: