Xreferat.com » Рефераты по физике » Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

должен значительно превышать номинальный ток конденсатора.


6.17. Потери в кабелях связанные с низким коэффициентом мощности


Принимаем начальный cosj=0,7; с учетом компенсации cosj=0,95.

Потери учитываем только в кабельной линии от ГПП-33 до РП-365, т.к. коэффициент мощности увеличивается только до места установки компенсирующих устройств.

Сопротивление кабеля ААБлГ-4(3х185), l=707м от ГПП-33 до РП-365

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Рабочий ток при cosj=0,8

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Рабочий ток при cosj=0,95

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Потери активной энергии при cosj=0,7

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Потери активной энергии при cosj=0,95

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

Разность потерь активной энергии за год

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"


6.18. Добавочные потери от высших гармоник в электрических машинах


Потери в электрических машинах. При работе синхронных и асинхронных двигателей в условиях несинусоидального напряжения возникают добавочные потери мощности, обусловленные высшими временными гармониками тока в цепях статора и ротора. Появляются также добавочные потери в стали статора и ротора; однако эти потери малы и ими можно пренебречь. Основная часть добавочных потерь от гармоник в синхронных машинах приходится на долю демпферной клетки и обмотки статора; потери в обмотке ротора, как правило, оказываются меньшими. В асинхронных двигателях высокого напряжения потери в статоре и роторе примерно одинаковы.

Оценка величин потерь от высших временных гармоник в синхронных двигателях производим по кривым рис.3-6. [7], на которых представлены отношения этих потерь DРДn при напряжении, равном одному проценту напряжения основной частоты, к суммарным номинальным потерям DРном.

Удельные потери для одной гармоники будут различными в зависимости от того, какую последовательность образует система векторов напряжения этой гармоники, поскольку различной оказывается частота токов в роторе и демпферной системе. Используем средние значения удельных потерь, рассчитанных для случая прямого и обратного следования фаз векторов напряжения гармоник.

Для СД компрессорной станции

Суммарные потери DРSn, % определяемые всеми гармониками напряжения

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.29)

для СД DРном=0,003Рном=0,003*3200*8=81,6кВт

по кривым рис. 3-6. [7] определяем отношения:

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"%;

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"%;

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский".

Для трансформаторов подъемных машин КС-3.

Потери активной мощности от токов высших гармоник в трансформаторах выражаются формулой

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.30)

где InТ —ток n-й гармоники, протекающий через трансформатор; rт - сопротивление трансформатора при промышленной частоте; кnТ - коэффициент, учитывающий увеличение сопротивления короткого замы­кания для высших гармоник вследствие влияния поверхностного эффекта и эффекта близости. Для силовых трансформаторов можно принять к11=3,2 и к13=3,7.

Для трансформаторов ТП-365, ТП-363, ТП-312, ТП-309:

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.31)

по табл. 27.6. [1] принимаем DРм=DРх.х.+DРк.з.

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"Ом

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"


6.19. Управление и регулирование батарей конденсаторов и СРФ


Необходимо четко разграничивать понятия автоматического управления и автоматического регулирования БК. При автоматическом управлении в качестве задающего органа на входе цепи управления может использоваться измерительный орган, например реле, реагирующий на электрическую величину. При достижении электрической величиной уставки срабатывания измерительного органа последний воздействует на коммутирующий аппарат, включающий в работу БК. Если ее включение не ока­зывает существенного влияния на измеряемую изме­рительным органом электрическую величину, то обратного действия от изменения режима сети на вход цепи управления не происходит. Направление воздействий проходит по “открытой” цепи управления. Подобное управление режимом БК может осуществляться в том случае, когда вопрос о ее работе решается двояко: либо включена, либо отключена. Отключение БК происходит при снижении измеряемой электрической величины до уставки возврата измерительного органа. Таким образом, вопрос может решаться лишь в том случае, если приходится иметь дело с односекционной установкой.

В случае многосекционной установки мощность последней изменяется многократно во времени в соответствии с требованием режима узла электрической сети. Предположим, что в результате роста нагрузок узла электрической сети (возмущающее воздействие) возникают отклонения регулируемого параметра от заданного и для восстановления регулируемой величины до заданного значения необходимо включить в работу одну секцию БК. Зафиксированное измерительным органом автоматического регулятора отклонение параметра сопровождается появлением регулирующего воздействия, которое приводит к включению коммутирующего аппарата первой секции. После этого параметр восстанавливается до желательного уровня. Это фиксируется измерительным органом регулятора, который прекращает дальнейшую посылку сигнала на увеличение мощности БК. Если в дальнейшем в связи с ростом нагрузки величина Q дополнительно изменится, то регулятор может повторно послать регулирующее воздействие на дополнительное увеличение мощности БК. При изменении регулируемого параметра в обратную сторону будет послан импульс на уменьшение мощности БК. Здесь после приведения в действие измерительного органа регулятора воздействие проходит от звена к звену, к “регулируемой величине”. В результате образуется замкнутая цепь регулирования, действующая до наступления установившегося состояния. Регулятор путем сравнения заданного значения регулируемой величины, получаемого от задающего органа, и фактического ее значения производит измерение отклонения регулируемой величины и соответственно воздействует на объект. Регулятор прекращает свое действие после полного исчерпания регулирующего диапазона, так как после включения всех секций дополнительное увеличение мощности БК невозможно (аналогично уменьшение мощности БК после отключения всех секций).

Сравнивая приведенные примеры можно определить автоматическое управление как управление по незамкнутой схеме, а автоматическое регулирование — как управление по замкнутой схеме. От того, осуществляется ли управление по разомкнутой или замкнутой схеме, зависит выбор параметров регулирования. При замкнутой схеме в качестве параметра регулирования можно использовать комбинацию лишь таких величин, которые существенно изменяются с изменением режима БК, к примеру, напряжение сети в сочетании с напряжением, пропорциональным реактивной составляющей тока питающего участка сети. Регулирование режима БК по замкнутой схеме должно применяться для многосекционных батарей. При управлении по разомкнутой схеме односекционной установкой не требуется автоматического регулятора. В этом случае можно использовать реле управления, реагирующее на любой параметр режима электрической сети, даже практически не изменяющийся в результате включения или отключения БК. В качестве такого параметра может быть использовано напряжение или ток элемента электрической сети. К устройствам, действующим по разомкнутой схеме, относятся также временные программные устройства, циркулярная система телеуправления и т. п.

С учетом выше сказанного для четырех секционной батареи конденсаторов применим схему автоматического регулирования в функции тока нагрузки с применением бесконтактных элементов, показанную на чертеже.


Определим ступень регулирования Q.

Максимальные ступени увеличения напряжения при включении конденсаторной установки во избежание резких колебаний напряжения не должны превышать 1-2% номинального напряжения сети. Регулирующий эффект при включении одной секции конденсаторной установки определим по формуле:

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.31)

где Хс – реактивное сопротивление элементов сети, ближайших к установке.

DU%=Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"%

Регулируемыми делаем все секции БК.

Зона нечувствительности регулирования режима БК.

Включение и отключение секций БК осуществляется при несколько отличающихся параметрах, поступающих на измерительный орган U1 и U2. Разность этих параметров

DU=зU1-U2п

определяет нечувствительность регулирования, которая должна превосходить изменение результирующего напряжения на измерительном органе, наблюдающееся при включении и отключении секции БК.

Если контролируется активный ток или независимый реактивный ток, то включение и отключение секции не сопровождаются изменением тока. Напряжение в этих случаях является единственно изменяющейся величиной и зона нечувствительности может быть небольшой.

Погрешность, связанная с изменением уставки регуляторов по напряжению, по относительному значению меняется в соответствии с изменением этой уставки. Обычно предельное значение изменения уставки по напряжению составляет 10%, что гораздо больше 0,9% повышения напряжения вследствии включения 1 секции БК.


6.20. Принципиальная схема автоматического регулирования в функции тока нагрузки секциями БК


В схеме автоматического регулирования датчиком является индуктивная катушка L, состоящая из провода, намотанного на сердечник, состоящий из пластин прямоугольной формы. Катушка расположена в непосредственной близости от одной из шин. Схема работает следующим образом.

При прохождении тока нагрузки по шине в катушке L наводится ЭДС. Переменное напряжение, выпрямленное мостом, состоящим из четырех диодов VD1-VD4 подается на конденсатор С1, служащий фильтром, и С2, который заряжается через потенциометр R1, осуществляющий регулировку времени заряда.

Напряжение с этого конденсатора подается на делители напряжения, число которых соответствует количеству регулируемых секций БК. Делитель напряжения состоит из двух резисторов R2 и R4 и одного потенциометра R3, которым регулируется напряжение, подаваемое на базу каждого из транзисторов, VT1,VT3,VT5 и VT7.

Если ток нагрузки невелик, то напряжение на конденсаре С2 тоже будет незначительно. В этом случае транзисторы VT1,VT3,VT5 и VT7 будут закрыты, так как напряжение на стабилитроне VD9 будет приложено к базам этих транзисторов через резистор R5 и делитель R3 и R4.При этом транзисторы VT2,VT4,VT6 и VT8 будут открыты и катушки реле К1,К2,К3 и К4 будут притянуты. При возрастании тока нагрузки напряжение на конденсаторе С2 также будет возрастать с задержкой по времени, определяемой постоянной времени цепочки R1С2. Когда напряжение на конденсаторе достигнет определенного значения, напряжение, подаваемое с делителя R2-RЗ-R4 на базу транзисторов VT1,VT3,VT5 и VT7, становится достаточным для их открытия, что соответственно вызывает закрытие транзисторов VT2,VT4,VT6 и VT8 с последующим отключением катушек реле К1,К2,К3 и К4 в цепях коллекторов этих транзисторов. Напряжение, сравнения в данной схеме можно плавно регулировать потенциометром делителя. Реле К1,К2,К3 и К4 размыкающими контактами соответственно включают катушки промежуточных реле К5,К6,К7 и К8 контакты которых включают включающие катушки вакуумных выключателей секций БК— К13,К14,К15 и К16.

При уменьшении тока нагрузки напряжение на конденсаторе С2 также будет снижаться с задержкой по времени, определяемой постоянной времени разряда С2. Когда напряжение на конденсаторе достигнет определенного значения, напряжение, подаваемое с делителя R2-RЗ-R4 на базу транзисторов VT1,VT3,VT5 и VT7, становится минимальным для их закрытия, что соответственно вызывает открытие транзисторов VT2,VT4,VT6 и VT8 с последующим включением катушек реле К1,К2,К3 и К4 в цепях коллекторов этих транзисторов. Реле К1,К2,К3 и К4 замыкающими контактами соответственно включают катушки промежуточных реле К9,К10,К11 и К12 контакты которых включают отключающие катушки вакуумных выключателей секций БК— К17,К18,К19 и К20.

В цепи отключающих катушек вакуумных выключателей включены четыре выключателя SB1,SB2,SB3,SB4 для ручного отключения на случай ревизии или ремонта БК. Транзистор VТ9 в схеме служит для стабилизации напряжения.

Данная схема показала себя надежной в работе, состоит из серийных элементов и проста в обслуживании.


6.21. Управление батареями конденсаторов в аварийных режимах


Наравне с управлением местными источниками реактивной мощности в нормальных режимах работы актуальна проблема управления ими в аварийных режимах, когда возникают глубокие снижения напряжения вследствие коротких замыканий с последующими затрудненными самозапусками двигателей технологического оборудования, а также явления “лавины напряжения” в узлах энергосистемы и нагрузочных узлах.

Воздействие на режим БК при переходных процессах в электрической системе нежелательно, так как это может привести к большому числу лишних коммутационных операций, а, следовательно, к преждевременному износу коммутационной аппаратуры. Поэтому нецелесообразно воздействовать на БК в случаях снижения напряжения, когда короткие замыкания отключаются без последствий для работы технологического оборудования.

Управление БК в аварийных ситуациях может быть двояким. Поскольку часть секций многосекционных БК в некоторых режимах сети находится в отключенном состоянии, целесообразно осуществлять включение этих секций при авариях. Такое включение можно производить по сигналу прибора, выявляющего глубокое снижение напряжения, с небольшой выдержкой временя во избежание чрезмерно частого включения бк. Если короткое замыкание отключается в пределах этого времени и напряжение восстанавливается, то посылка сигнала на включение секций БК не производится. Если же после отключения короткого замыкания сохраняется глубокое снижение напряжения, что является показателем затяжного самозапуска двигателей технологического оборудования или нарушения устойчивости узла нагрузки, то включаются все отключенные секции.

Следует, однако, учитывать, что повышение напряжения за счет включения отключенных секций БК является в ряде случаев незначительным. Усложнение же автоматической аппаратуры, предусматривающей аварийное включение всех секций, оказывается существенным. Поэтому такая возможность должна предусматриваться только для крупных БК системного значения.

Для северной подъемной машины СРФ подключаем без регулирования, т.к. коэффициент несинусоидальности в течение всех суток больше нормированного значения.

Для СРФ южной подъемной машины применим схему автоматического управления в функции времени суток. В качестве датчиков при таком регулировании используются электрические втроричные сигнальные часы типа ЭВЧС-24, имеющие 24-часовую программу переключений СРФ.


6.22. Принципиальная схема автоматического управления СРФ


Принцип работы схемы заключается в следующем.

В течении 1-ой и 2-ой смены работы предприятия коэффициент несинусоидальности находится в пределах нормируемого значения и в 3 смену повышается выше допустимого значения. В начале третьей смены в 16 часов необходимо включить все СРФ. В этом случае замыкается контакт электрических часов К1.1, К1.3, К1.5 и все три включающие катушки К2,К4,К6 с выдержкой времени через соответствующие реле времени КТ1,КТ3,КТ5 получают питание, которые в свою очередь подают питание на включающие катушки вакуумных выключателей. В 24 часа размыкаются контакты К1.1, К1.3, К1.5 и включаются контакты К1.2, К1.4, К1.6 и все три отключающие катушки К3,К5,К7 с выдержкой времени через соответствующие реле времени КТ2,КТ4,КТ6 получают питание, которые в свою очередь подают питание на отключающие катушки вакуумных выключателей.

В схеме предусмотрено ручное управление с помощью включающих SB2,SB4,SB6 и отключающих SB3,SB5,SB7 кнопок.


6.23. Контроль за потреблением реактивной мощности


При известном потреблении реактивной энергии за Д дней в целом Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" и отдельно за ночные Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" и вечерние Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" смены значение Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" - фактическое значение минимальной потребляемой реактивной мощности определяется по формуле

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.32)

tд — продолжительность дневного периода суток.

Ввиду того что величины Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"и Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" неизвестны, принимаем следующие допущения:

средняя за все ночные смены реактивная мощность приблизительно равна ее среднему значению за часы максимальных нагрузок системы;

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.33)

2) отношение Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"/Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" приблизительно равно отношению по­требления активной мощности в те же периоды (последнее считает­ся известным):

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.34)

В случае, когда КУ работают в течение ночной и вечерней смен, что характерно для двух- и трехсменных предприятий, показания счетчиков, соответствующие естественным нагрузкам (без КУ), могут быть определены добавлением к фактическим показаниям величин Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" и Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" соответственно.

Для этих скорректированных показаний условие 2) будет соблюдаться, т. е.

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.35)

при Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.36)

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.37)

при Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.38)

при семидневной рабочей неделе (Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"=1,2), Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", l=0,7, Кq=1

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский", (6.39)

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский";

В дневную смену рекомендуется отключать некоторые секции БК.

Для контроля за фактическим потреблением Q на шинах ГПП-33 по табл. 18.4. [3] намечаем к применению счетчик реактивной мощности тип: СР4-И689, класс точности 1,5 , подключение через трансформаторы тока и напряжения.

Включение в трехпроводную цепь.

Iном.первич.=5кА, Iном.вторич.=5А,

Uном.первич.=6кВ, Uном.вторич.=100кВ.

Выбор трансформатора тока:

По табл.31.9. [1] выбираем тип: ТПШЛ-10УЗ, Iном=4кА, класс точности=0,5,

Электродинамическая стойкость – кратность=20,

Термическая стойкость 35кА/3с.

Проверка на динамическую устойчивость Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский";

20кА>6,7кА

Кратность односекундного тока термической стойкости:

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский";


Выбор трансформатора напряжения.

По табл.31.13.[1] выбираем тип: НОМ-6-У4, Uвторич.=100В, класс точности=0,5, номинальная мощность 50ВА.

7. Обслуживание, ремонт и наладка энергетического оборудования и средств автоматизации


Конденсаторные установки должны удовлетворять требованиям ПУЭ [2], .которые распространяются на установки напряжением до 220 кВ, присоединяемые параллельно индуктивным элементам электрических систем переменного тока частотой 50 Гц (установки для поперечной компенсации). К наиболее существенным особенностям электрооборудования, влияющим на компоновку конденсаторных установок, относится форма его исполнения, определяющая, для каких условий эксплуатации это оборудование предназначено: в закрытом помещении или на открытом воздухе. Имеет также значение, является ли конденсаторная установка комплектной или выполняется из отдельных элементов.

Расположение установки на генплане оказывает влияние на компоновку в зависимости от того, устанавливается ли она совместно с другим оборудованием в одном помещении или отдельно. Если компоновка позволяет заменить кабельные связи шинными — это, как правило, приводит к повышению надежности.

Приближение конденсаторной установки к потребителю реактивной мощности, совмещение в общем помещении конденсаторной установки с другим электрооборудованием экономически выгодно.

Конструкция каркаса конденсаторных ячеек должна обеспечивать хорошую обозреваемость конденсаторов, изоляторов, предохранителей и другого оборудования при осмотре их под напряжением. К конденсаторам, предохранителям и контактам шин должен быть свободный доступ во время производства ремонта при снятом напряжении, а также возможность свободной замены конденсаторов и предохранителей без разборки всей ячейки. Конденсаторные установки выпускаются как для одностороннего, так и для двустороннего обслуживания. Для внутренних установок предпочтительно применение конденсаторных установок с односторонним обслуживанием. Для удобства эксплуатации конденсаторных установок при снятии и установке конденсаторов массой 60— 100кг желательно комплектно с конденсаторной установкой иметь рычажное или простое передвижное подъемное устройство. В предназначенных для установки конденсаторов помещениях устройство окон и отопление не требуются. Следует учитывать, что для северных районов при применении конденсаторов с синтетическим диэлектриком (соволом), который допускает работу при температуре не ниже —10 °С, устанавливать конденсаторные установки необходимо только в закрытых помещениях, где поддерживается температура не ниже —10 °С. В южных районах конденсаторные установки необходимо располагать по возможности с северной стороны здания. Конденсаторные установки можно устанавливать и на открытом воздухе.

При разработке узлов и отдельных элементов конденсаторных установок должны учитываться следующие требования:

конструкции должны обеспечивать необходимую степень надежности и быть удобными в монтаже и эксплуатации;

они должны выдерживать без повреждения усилия, которые могут возникать как в период эксплуатации, например при коротком замыкании, так и при транспортировке. Последнее особенно следует учитывать при крупноблочных электроконструкциях.

Конденсаторы работают со сравнительно высокими напряженностями поля в диэлектрике. Совместное действие этих напряженностей и высокой рабочей температуры приводит к сокращению срока службы конденсаторов. Поэтому вентиляция конденсаторных установок должна обеспечивать хорошую циркуляцию воздуха вокруг каждого конденсатора. Большое значение это имеет для конденсаторов, которые установлены в несколько ярусов один над другим. Для обеспечения хорошей вентиляции следует избегать горизонтальных межъярусных перегородок. При этом необходимо учитывать определенные расстояния между соседними конденсаторами и окружающими стенками, для того чтобы можно было всю поверхность конденсатора полностью использовать для отвода тепла.

Помещения, где устанавливаются конденсаторные установки, должны иметь естественную вентиляцию; если последняя не обеспечивает снижения температуры воздуха в помещении до уровня максимально допустимой, необходимо применять искусственную вентиляцию. Температура окружающего воздуха в помещении конденсаторных установок не должна превышать 35 °С.

Конденсаторные установки не допускается устанавливать в цехах с насыщенной токопроводящей пылью, с химически активной и взрывоопасной средой, а также в цехах, где конденсаторы могут подвергаться постоянным сотрясениям, вибрациям и ударам. При размещении конденсаторных установок в отдельном помещении для защиты от случайных прикосновений, к частям оборудования, находящимся под напряжением, должно предусматриваться сетчатое ограждение высотой не менее 1,7м от пола. При установке же в производственных помещениях могут предусматриваться сплошные ограждения из листовой стали с отверстиями для вентиляции. Корпуса (баки) конденсаторов, металлические конструкции, на которых они стоят, сетчатые ограждения, и другие нетоковедущие части конструкции конденсаторной установки должны быть заземлены и присоединены к общему контуру заземления подстанции, цеха. В ячейке ввода конденсаторной установки должны быть предусмотрены зажимы для присоединения переносных заземляющих устройств.

Конденсаторные установки (если их установлено две или несколько рядом или в одном помещении) с общей массой масла более 600кг должны быть расположены в отдельном помещении с выходом наружу или в общее помещение I и II степеней огнестойкости по пожарным требованиям, при этом под конденсаторной установкой напряжением выше 1 000 В должен быть устроен маслоприемник, рассчитанный, на 20% общей массы масла, содержащегося во всех конденсаторах.

8. Экономическая часть


8.1. Экономическая эффективность применения компенсирующих устройств и СРФ.


Капитальные затраты на установку оборудования компенсирующих устройств и СРФ.

Стоимость батарей конденсаторов:

по табл.16-19. [6] принимаем стоимость 1кВАр=2,15 у.е.

ЦБК=2,15*1800=3870 у.е.

Стоимость коммутационной аппаратуры:

4 вакуумных выключателя Ц=4*161=644 у.е.

4 разъеденителя Ц=4*16,5=66 у.е.

Стоимость батарей конденсаторов СРФ и реакторов:

ЦБК=2,15*7800=16770 у.е.

ЦР=1720*18=30960 у.е.

Стоимость коммутационной аппаратуры для СРФ:

6 вакуумных выключателя Ц=6*161=966 у.е.

4 разъеденителя Ц=6*16,5=99 у.е.

Потери активной энергии в конденсаторах БК и СРФ:

DРБК=DР*5000*С,

где С=0,009 у.е. за 1 квт*ч

DРБК=5,4*103*3000*0,009=150 у.е.

DРСРФ=23,4*103*3000*0,009=630 у.е.

Потери активной энергии в реакторах СРФ:

DРСРФ=6,5*103*18*3000*0,009=3000 у.е.

Затраты, связанные с проектированием и эксплуатацией компенсирующих устройств.

Приведенные затраты, связанные с проектированием и эксплуатацией КУ, могут быть записаны в виде

Зк=Гк+рНКк, (8.1)

где Гк—годовые эксплуатационные расходы; Кк—сметная стоимость КУ, т. е. капитальные затраты на их установку; рН — нормативный коэффициент эффективности капитальных затрат.

На стадии проектных проработок обычно пользуются укрупненными технико-экономическими показателями. В данном случае капитальные затраты и годовые эксплуатационные расходы удобнее представлять в функции удельных капитальных затрат kу.к и установленной мощности КУ Qк. При этих условиях можно записать |

Кк= kу.кQк, (8.2)

Гк=ркkу.кQк+ Dру.кQкТк.максb, (8.3)

где рк — отчисления на амортизацию, текущий ремонт и обслуживание КУ; Dру.к — удельные потери мощности в КУ; Тк. макс — время использования максимальной мощности КУ; b — стоимость 1 кВт • ч потерянной энергии.

Принимаем kу.к=1, рН =1,1, рк=0,01Кк, kу.к=2,15 у.е./кВАр, Dру.к=0,003 кВт/кВАр, Т=3000ч., b=0,009 у.е./кВт

Кк=ЦБК+Цкомм.апп=3870+710=4580 у.е.

Зк=4580*0,1*2,15*1800+0,003*1800*3000*0,009+1,1*4580=1777644 у.е

Экономическая эффективность минимизации уровня гармоник.

Оценка экономической эффективности минимизации гармоник основывается на формуле приведенных затрат

З=рКосн+Ин, (8.4)

где Косн — единовременные капитальные вложения; Ин — ежегодные издержки производства; р — нормативный коэффициент эффективности капитальных вложений.

Для сравниваемых вариантов в формулу входят лишь составляющие, которые обусловлены наличи­ем гармоник

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: