Xreferat.com » Рефераты по физике » Радиоактивность и ядерные излучения

Радиоактивность и ядерные излучения

Реферат


Тема: Радиоактивность и ядерные излучения

План


1. Общие сведения о радиоактивных излучениях

2. Строение атомного ядра

3. Радиоактивный распад

4. Взаимодействие излучений с веществом

4.1. Взаимодействие альфа-частиц с веществом

4.2.Взаимодействие бета-частиц с веществом

4.3.Взаимодействие гамма-излучения с веществом

4.4.Взаимодействие нейтронов с веществом

5. Дозиметрия

Литература

1. ОБЩИЕ СВЕДЕНИЯ О РАДИОАКТИВНЫХ ИЗЛУЧЕНИЯХ


Радиоактивность появились на земле со времени ее образования и человек за всю историю развития своей цивилизации находился под влиянием естественных источников радиации. Земля подвержена радиационному фону, источниками которого служат излучения Солнца, космическое излучение, излучение от залегающих в Земле радиоактивных элементов.

Термин радиоактивность, радиация по латыни звучит как излучение, с которым мы встречаемся каждый день, зажигая электрический свет (электромагнитное излучение), включая телевизор (излучение электронов) или загорая на солнце (ультрафиолетовое излучение). В дальнейшем под термином радиоактивность мы будем рассматривать ионизирующее излучение, т.е. излучение, действующее на вещество и изменяющее физическое состояние атомов в нем. Явление радиоактивности было открыто французским физиком А. Беккерелем 1 марта 1896 года при случайных обстоятельствах. Беккерель положил несколько фотографических пластинок в ящик своего стола и, чтобы на них не попал видимый свет, он придавил их куском соли урана. После проявления и исследования он заметил почернение пластинки, объяснив это излучением солью урана невидимых лучей. От солей урана Беккерель перешёл к чистому металлическому урану и отметил, что эффект испускания лучей усилился. Так произошло открытие радиоактивности.

Исследования показали, что эти лучи проникают сквозь тонкие металлические экраны и ионизируют газ, через который проходят. Их проникающая способность не зависит ни от температуры, ни от освещения, ни от давления. Их интенсивность не менялась со временем. Замечательной способностью обнаруженного излучения оказалась его самопроизвольность. Эти лучи, назвали позднее рентгеновскими.

Поисками веществ, способных к лучеиспусканию, по предложению Беккереля занялись молодой профессор Пьер Кюри и его супруга Мария Складовская-Кюри. Эти учёные обнаружили, что урановая смоляная руда обладает способностью давать излучение, в 4 раза превосходящее по интенсивности излучение урана. Это свидетельствовало о том, что в руде присутствовал источник излучения, более мощный, чем уран. В 1898 году супруги Кюри открыли два новых элемента — полоний, названный так в честь родины Марии Складовской-Кюри — Польши, и радий, что означает по латыни "испускающий лучи".

В честь супругов Кюри получил свое название искусственно полученный трансурановый элемент с номером 96 — Кюрий. Среди элементов содержащихся в земной коре, радиоактивными являются все начиная с висмута, т.е. с порядковым номером более 83 в таблице элементов Менделеева.

Вещества, испускающие новые излучения были названы радиоактивными, а новое свойство вещества, связанное с испусканием излучения, по предложению М. Кюри, было названо радиоактивностью.

Вскоре после открытия полония и радия Резерфордом было установлено, что радиоактивное излучение неоднородно по своему составу. Одна часть излучения поглощается тонкой алюминиевой фольгой, а другая проходила без изменения. Анализ состава излучения проводился по отклонению его в магнитном поле (рис. 1.1). Было обнаружено, что излучение содержит три вида лучей — альфа, бета, гамма.

Характер отклонения лучей в магнитном поле показывает, что альфа-лучи несут положительный заряд. Оказалось, что это атомы гелия, потерявшие два электрона, т.е. ядра атома гелия-4.

Ядро гелия-4 состоит из двух положительных протонов и двух нейтральных нейтронов. Все частицы в ядре связаны прочной связью и оно стабильно.

а-лучи — тяжелые частицы с малой проникающей способностью.

Бета-лучи — легкие частицы с большой проникающей способностью. Бета-лучи представляют собой поток быстро летящих электронов. Их скорость близка к скорости света.

у-лучи обладают максимальной проникающей способностью и представляют собою жесткое электромагнитное излучение. Гамма-лучи обладают относительно малой ионизирующей способностью, в тоже время они имеют большие частоты, чем рентгеновские лучи. Это свойство гамма-лучей привело к широкому использованию их в медицине, для лечения злокачественных опухолей, диагностике заболеваний и т.д.


2. СТРОЕНИЕ АТОМНОГО ЯДРА


Все тела независимо от их агрегатного состояния состоят из мельчайших "кирпичиков", которые назвали атомами. "Кирпичики" имеют различные типы связи в зависимости от того к какому химическому элементу таблицы Менделеева они принадлежат. Химический элемент — совокупность атомов одного типа. Древние греки считали атом неделимым, отсюда и произошел термин атом, "неделимый". Но, как показано выше, атом является источником радиоактивного излучения, поэтому рассмотрим его строение более подробно.

Английский учёный Джозеф Джон Томпсон, проводя исследование катодных лучей, возникающих при электрическом разряде в газах, впервые экспериментально обнаружил элементарные отрицательные заряды — электроны. Он же первый измерил удельный заряд электрона — е/т (отношение заряда электрона к его массе). Было установлено, что электроны вырываются из атомов. Атомы, представлявшиеся до этого неделимыми "кирпичиками мироздания", обнаружили тонкую структуру.

В 1903 г. после открытия электрона Томсон предложил модель атома в виде положительной объемно заряженной сферы диаметром 10~10 м, внутри которого, подобно изюму в кексе, вкраплены электроны. Отрицательный заряд электронов равен положительному заряду сферы. Излучение атомом Томсон объяснял колебаниями электронов относительно центра сферы. Из модели Томсона следовало, что масса атома распределялась равномерно по всему объему, однако, как позднее в 1908 году показал Э. Резерфорд в опытах по рассеянию «-частиц (ядер гелия тонкой золотой фольгой), это являлось ошибочным.

В качестве "зондирующих" частиц были выбраны альфа-частицы, преимущество которых перед другими видами излучений — в их высокой монохроматичности (все альфа-частицы, вылетающие из атомов одного сорта имеют одинаковую скорость) и в их большой массе (масса альфа-частицы превышает массу электрона в 7296 раз). Из-за своей большой массы альфа-частицы не должны испытывать соударений с электронами, содержащимися в атоме, и по их рассеиванию в веществе можно судить о распределении положительно заряженной материи в атоме.

Схема опытов Резерфорда представлена на рис. 1.2. Альфа-частицы испускались источником 1, помещенным внутри свинцовой камеры с узким каналом 2 так, чтобы все частицы, кроме движущихся вдоль оси канала, поглощались стенками камеры. Узкий пучок альфа-частиц попадал на тонкую золотую фольгу 3, перпендикулярно к её поверхности. Альфа-частицы, прошедшие через фольгу и рассеянные ею, попадали на экран и вызывали вспышки (сцинтилляции) на нем. В промежутке между фольгой и экраном создавался вакуум, чтобы не происходило дополнительного рассеяния альфа-частиц в воздухе.

Опыты показали, что в большинстве своем частицы после прохождения фольги сохраняли своё прежнее направление или отклонялись на очень малые углы. И лишь одна из 2 х 104 частиц отклонялась на угол, больший 90°. Для объяснения результатов этих опытов Резерфорд предположил, что весь положительный заряд сосредоточен в весьма малом объеме атома — ядре. Остальной объем атома заполнен электронами, полный отрицательный заряд которых равен положительному заряду ядра. Так в 1911 году была создана ядерная модель атома.

Рассеяние альфа-частиц в этой модели атома получило простое объяснение. В самом деле, так как электроны имеют весьма малую массу, по сравнению с альфа-частицей и распределены по всему объему атома, то а-частицы не должны испытывать заметного отклонения из-за взаимодействия с электронами. Только те частицы, которые проходят вблизи ядра испытывают сильное отклонение из-за кулоновских сил отталкивания между положительно заряженной частицей и массивным ядром. Но из-за малых размеров ядра вероятность встречи альфа-частицы с ядром также мала, поэтому и число альфа-частиц, испытавших отклонения на большие углы, весьма невелико.

На основании опытов Резерфорда по рассеянию альфа-частиц тонкими металлическими фольгами и теоретических расчетов была сформулирована ядерная модель ядра. По этой модели в центре атома — ядре, имеющем линейные размеры 10~ -10 м, сосредоточен весь положительный заряд атома и практически вся его масса. Вокруг атома, в области размером примерно 10 м, по орбитам движутся электроны, масса которых составляет весьма незначительную часть массы атома. Ядерная модель атомов напоминает солнечную систему: в центре системы находится "солнце" — ядро, а по орбитам вокруг него движутся "планеты" — электроны. "Планетарная" модель атома, дополненная постулатами Бора, оказалась весьма плодотворной для объяснения линейчатых спектров водородоподобных атомов, позволила объяснить природу характеристических рентгеновских спектров и ряд других физических явлений. В дальнейшем эта модель атома претерпела изменения, сохранив при этом свои основные черты. Атом состоит из ядра и электронов, расположенных вокруг ядра на определенных энергетических оболочках. Важнейшими характеристиками ядра являются его заряд Z и масса М.

В 1911 г. в опытах Резерфорда по облучению альфа-частицами легких газов показано, что ядра расщепляются, с вылетом ядер водорода, которые впоследствии были названы протонами. Эти эксперименты показали, что протоны являются составной частью ядра.

В 1932 г. английский физик Дж. Чедвиг провел опыты по бомбардировке бериллиевой фольги альфа-частицами и открыл еще одну ядерную частицу — нейтрон, который по своей массе был близок к протону.

Заряд ядра определяется числом элементарных положительных зарядов, содержащихся в нем, и совпадает с порядковым номером химического элемента в таблице Менделеева. Носителем элементарного положительного заряда является протон. Заряд протона (р) q = +1,6021 х Ю~19 Кл, масса покоя протона М = 1,6726 хЮ"26 кг =1836Ме (Ме = 9,11хЮ~31 кг). В состав ядра, кроме протонов, входят нейтроны. Нейтрон (п) — нейтральная частица с массой покоя Мп = 1,6749 х 10~27 кг = 1839Ме.

В ядерной физике считается, что протон и нейтрон — два так называемых зарядовых состояния одной и той же частицы — нуклона (от латинского nucleus — ядро). Протон является протонным состоянием нуклона с зарядом +е , нейтрон — его нейтронным состоянием с нулевым зарядом. Нуклоны в ядре находятся в состояниях, отличных от их свободных состояний. Это связано с тем, что в ядре между нуклонами осуществляется особое ядерное взаимодействие. От электромагнитного взаимодействия оно отличается тем, что одинаково действует на заряженный протон и нейтральный в элементарном отношении нейтрон. Действие ядерного взаимодействия проявляется на очень близких ядерных расстояниях (около 10~13 м), величина очень велика, позволяющая сжать ядерное вещество до плотности сотни миллионов тонн в 1 см3.

Масса атомного ядра совпадает практически с массой всего атома, т.к. масса электронов мала. Ядро, как и нейтральный атом, символически обозначаются так АгХ , где X — символ химического элемента, Z — атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре). Массы атомов принято выражать в атомных единицах массы (а. е. м.). За атомную единицу массы принята 1/16 массы атома кислорода:


Радиоактивность и ядерные излучения


Кроме того применяется "унифицированная атомная единица массы" (у. а. е. м.), равная 1/12 массы атома углерода:


Радиоактивность и ядерные излучения


В природе существуют множество радиоактивных веществ, в соответствии со своими свойствами они объединены в ряды тория и урана. Однако и среди них встречаются вещества с одинаковыми химическими свойствами но с различными массами. Эти вещества были названы изотопами (от греческих слов "одинаковый" и "место"), т.е. ядра с одинаковыми Z, но разными А (т.е. с разными числами нейтронов N = А - Z). Например, водород (Z = 1) имеет три изотопа:Радиоактивность и ядерные излучения— протий (Z = 1, N = 0), Радиоактивность и ядерные излучения — дейтерий (Z = 1, N = 1), Радиоактивность и ядерные излучения— тритий (Z = 1, N = 2). Ядра с одинаковыми А, но разными Z называются изобарами. Примером ядер-изобар могут служитьРадиоактивность и ядерные излучения.


3. РАДИОАКТИВНЫЙ РАСПАД


В 1911 году Резерфорд и Содди показали, что атомы некоторых веществ испытывают последовательные превращения, образуя радиоактивные ряды, где каждый член этого ряда возникает из предыдущего, причем никакими внешними физическими воздействиями (температура, электрические и магнитные поля, давление) нельзя повлиять на характеристики распада.

Позже, способность некоторых ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов излучения и элементарных частиц называли радиоактивностью. При этом различают два вида радиоактивности — естественную, наблюдающуюся у нестабильных изотопов атома, существующих в природе, и искусственную, наблюдающуюся у изотопов, образующихся в результате ядерных реакций. Оба вида радиоактивности ничем принципиально не отличаются друг от друга и описываются одними и теми же законами радиоактивных превращений.

Процесс естественного, самопроизвольно происходящего радиоактивного превращения называется радиоактивным распадом, или просто распадом. Ядра, испытывающие распад, называются радионуклидами. Исходное атомное ядро называется материнским, а ядро, образовавшееся в результате распада, называется дочерним.

Радиоактивный распад происходит со строго определённой скоростью, характерной для каждого данного элемента. Время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое, называется периодом полураспада Т. Периоды полураспада различных ядер колеблются в очень широких пределах. Так, например, период полураспада уранаРадиоактивность и ядерные излучениясоставляет 4,5 млрд. лет, радия Радиоактивность и ядерные излучения— 1620 лет, радона— Радиоактивность и ядерные излучения 3,8 суток. Более того, периоды полураспада у изотопов одного и того элемента могут сильно различаться — уРадиоактивность и ядерные излученияRa Т = 1630 лет, а уРадиоактивность и ядерные излученияТ=0,001с.

Поскольку отдельные радиоактивные ядра распадаются независимо друг от друга, то закон радиоактивного распада носит статистический характер. Можно показать, что закон убывания во времени числа радиоактивных ядер данного вещества (закон радиоактивного распада) имеет вид Радиоактивность и ядерные излучения

ЗдесьРадиоактивность и ядерные излучения— число радиоактивных ядер в момент времени, принятый за начало отсчёта, т.е. при t = 0 . N — число радиоактивных ядер в момент времени t. Я — постоянная для данного радиоактивного вещества величина, носящая название постоянной радиоактивного распада. Между постоянной радиоактивного распада и периодом полураспада существует простая связь:


Радиоактивность и ядерные излучения


Среднее время жизни радиоактивного ядра г есть величина, обратная постоянной радиоактивного распада, т.е. радионуклиды, из которых 37000 распадается каждую 5 секунду.

Радиоактивный распад происходит в соответствии с правилами смещения, установленными опытным путём. Правила смещения: => для альфа-распада (превращения ядер, сопровождающиеся испусканием альфа-частиц)


Радиоактивность и ядерные излучения :=>


для бета распада (превращения ядер, сопровождающиеся, испусканием бета-частиц)


Радиоактивность и ядерные излучения


Активностью А нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами образца в единицу времени:


Радиоактивность и ядерные излучения


гдеРадиоактивность и ядерные излучения— число ядер, распавшихся в среднем за интервал времени от t до t + dt.

Единица активности в системе СИ — беккерелъ (Бк): 1 Бк — активность нуклида, при которой за 1 с происходит один распад. Внесистемная единица активности — кюри (Ки):


Радиоактивность и ядерные излучения Бк.


1 кюри равен числу распавшихся ядер содержащихся в 1 г радия за 1 с (3,7 хРадиоактивность и ядерные излучениярас/сек).

Милликюри —Радиоактивность и ядерные излученияКи.

Микрокюри —Радиоактивность и ядерные излученияКи.

На всех картах радиационного загрязнения, явившегося результатом Чернобыльской катастрофы, приводится радиационная плотность загрязнения, т.е. радиоактивность на единицу площади.

Например, если вы проживаете на территории с плотностью загрязнения почвы 1 Ки/кв. км или 37000 Бк/кв. м (37 кБк/кв. м), то это означает, что на одном квадратном метре этой почвы находятся


Радиоактивность и ядерные излучения


где X — химический символ материнского ядра, Радиоактивность и ядерные излучения— ядро атома гелия,Радиоактивность и ядерные излучения— символическое обозначение электрона (заряд его равен —1, массовое число равно 0).

Правила смещения являются следствиями двух законов сохранения, выполняющихся при радиоактивных распадах — сохранения электрического заряда и массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.

Получившееся в результате распада дочернее ядро тоже может быть радиоактивным. В результате возникает цепочка или ряд радиоактивных превращений, заканчивающихся стабильным изотопом. Совокупность элементов, образующих цепочку, называется радиоактивным семейством. Семейство называется по наиболее долгоживущему элементу (с наибольшим периодом полураспада) "родоначальнику" семейства: тория Радиоактивность и ядерные излучения уранаРадиоактивность и ядерные излученияи актиния. КонечнымиРадиоактивность и ядерные излучения нуклидами являются соответственно


Радиоактивность и ядерные излучения


В таблице 1 представлена цепочка семейства урана.


Радиоактивность и ядерные излученияТаблица 1. Семейство урана.

Вид излучения Нуклид Период полураспада
α Уран-238 4,47 млрд.лет
β Торий-234 24,1 суток
β Протактиний-234 1,17 минут
α Уран-234 245000 лет
α Торий-230 8000 лет
α Радий-226 1600 лет
α Радон-222 3,823 суток
α Полоний-218 3,05 минут
β Свинец-214 26,8 минут
β Висмут-214 19,7 минут
α Полоний-214 0,000164 секунды
β Свинец-210 22,3 лет
β Висмут-210 5,01 суток
β Полоний-210 138,4 суток

Свинец-206 стабильный

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЙ С ВЕЩЕСТВОМ


Для регистрации радиоактивности и мер защиты от ядерных излучений, необходимо знать за счет каких процессов теряется энергия излучения, проходя через вещество; какова ионизирующая способность различных видов излучения.

В основном заряженные частицы, проходя через вещество, теряют свою энергию за счет столкновений с атомами этого вещества. Так как масса ядра вещества на много больше по сравнению с массой электронов атома, то наблюдаются существенные различия между столкновениями "электронными" (падающая частица сталкивается с электроном) и "ядерными" столкновениями (падающая частица сталкивается с ядром атома). В первом случае происходит возбуждение или ионизация атома (неупругое столкновение), во втором — частица и атом приходят в движение как единая система (упругое столкновение). Ядерные столкновения происходят в веществе многократно, что приводит к рассеянию частиц. Если в результате взаимодействия появляются новые частицы или исчезают первоначальные, то этот процесс называют реакцией. В частности, если возникают при взаимодействии ядра с новыми свойствами, то реакция называется ядерной.

Процесс радиоактивного превращения элементов всегда сопровождаются выбросом элементарных частиц. Это могут быть заряженные частицы такие, как альфа-, бета-частицы, протоны и другие, нейтральные — нейтроны, нейтрино, так и гамма кванты различных энергий.

Пучки заряженных элементарных частиц, ядра лёгких элементов, ионов оказывают ионизирующее воздействие на вещество, через которые они проходят. Опосредствованное ионизирующее воздействие оказывают и нейтральные частицы, прежде всего нейтроны: в результате взаимодействия этих частиц с ядрами веществ испускаются ядром протон и гамма квант, которые и вызывают ионизацию среды.

Рассмотрим процессы, сопровождающие прохождение ионизирующего излучения через вещество.


4.1 ВЗАИМОДЕЙСТВИЕ АЛЬФА-ЧАСТИЦ С ВЕЩЕСТВОМ


История открытия и изучения альфа-частиц связана с именем Резерфорда. При помощи альфа-частиц Резерфорд проводил исследования большинства атомных ядер.

Альфа-частицы это атомы гелия, потерявшие два электрона, т.е. ядра атома гелия


Радиоактивность и ядерные излучения


Ядро гелия, состоящее из двух протонов и двух нейтронов устойчиво, частицы связаны в нем прочно.

В настоящее время известно более 200 альфа активных ядер, главным образом тяжёлых (А > 200, Z > 82 ), исключение составляют редкоземельные элементы (А=140-160). Примером альфа распада может служить распад изотопов урана:


Радиоактивность и ядерные излучения


Скорости, с которыми альфа-частицы ,, вылетают из распавшегося ядра, очень велики и колеблются для разных ядер в пределах от 1,4 х 107 до 2,0x10' м/с, что соответствует кинетическим энергиям этих частиц 4—8,8 МэВ. Альфа-частицы в состав ядра не входят, и, по современным представлениям, они образуются в момент радиоактивного распада при встрече движущихся внутри ядра 2-х протонов и 2-х нейтронов.

Пролетая через вещество, альфа-частицы постепенно теряют свою энергию, затрачивая ее на ионизацию газов. Причём в начале пути, когда энергия альфа-частиц велика, удельная ионизация меньше, чем в конце пути.

Под пробегом частицы в веществе понимается толщина слоя этого вещества, которую может пройти эта частица до полной остановки. Пробег частиц в основном определен для тяжелых частиц, т.к. их путь представляет прямую линию с наименьшим рассеянием. Пробег альфа-частиц зависит как от энергии частиц, так и от плотности вещества, в котором они движутся.

По пробегу альфа частицы можно определить ее энергию.


4.2 ВЗАИМОДЕЙСТВИЕ БЕТА-ЧАСТИЦ С ВЕЩЕСТВОМ


Бета-распад происходит, когда замена в атомном ядре ( нейтрона на протон энергетически выгодна, и образующееся новое ядро имеет большую энергию связи. Бета-излучение состоит из бета-частиц (электронов или позитронов), которые испускаются при бета-распаде радиоактивных изотопов. Электроны не входят в состав ядра и не выбрасываются из оболочки атома, при электроном бета- распаде происходит превращение нейтрона в протон с одновременным образованием электрона и вылетом антинейтрино. При этом заряд ядра и его порядковый номер увеличиваются на единицу. Электронный распад характерен для ядер с избыточным числом нейтронов. Примером электронного бета-распада может служить распад стронция:


Радиоактивность и ядерные излучения


При позитронном бета-распаде происходит превращение протона в нейтрон с образованием и выбросом из ядра позитрона. Заряд и порядковый номер ядра уменьшаются на единицу. Позитронный бета-распад наблюдается для неустойчивых ядер с избыточным числом протонов. Примером позитронного бета-распада может служить распад радионуклида натрия:


Радиоактивность и ядерные излучения


К бета-распаду относится также электронный захват (е-захват), т.е. захват атомным ядром одного из электронов своего атома. При этом один из протонов ядра превращается в нейтрон и испускается нейтрино. Возникшее ядро может оказаться в возбужденном состоянии.

Переходя в основное состояние оно испускает гамма-фотон. Место в электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышестоящих слоев, в результате возникает рентгеновское излучение.

Примером электронного захвата может служить следующая реакция:


Радиоактивность и ядерные излучения


Бета-частицы, испускаемые при бета-распаде, имеют различную энергию, поэтому и пробег их в веществе не одинаков. Путь, проходимый бета-частицей в веществе, представляет собою не прямую линию, как у альфа-частиц, а ломаную. Взаимодействуя с веществом среды, бета-частицы проходят вблизи ядра. В поле положительно заряженного ядра отрицательно заряженная бета-частица резко тормозится и теряет при этом часть своей энергии. Эта энергия излучается в виде тормозного рентгеновского излучения. С увеличением энергии бета-частиц и атомного номера вещества интенсивность рентгеновского излучения возрастает.

Ионизирующая способность бета-частиц много меньше, а длина пробега много больше, чем у альфа-частиц.

Радиоактивность и ядерные излучения

4.3 ВЗАИМОДЕЙСТВИЕ ГАММА-ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ


В литературе часто встречаются термины радиоактивных излучений: рентгеновские или гамма-лучи, или общее название — электромагнитные волны с короткими длинами волн, которые обладают большой проникающей способностью в веществе. Различные названия рентгеновские и гамма лучи — связаны не с различными физическими свойствами этих лучей, а со способом их получения. Наиболее часто употребляется гамма-излучение, которое не является самостоятельным видом радиоактивности, а только сопровождает альфа- и бета- распады. Оно возникает при ядерных реакциях, при торможении заряженных частиц и т.д.

Гамма-излучение испускается дочерним ядром. Дочернее ядро в момент своего образования оказывается возбуждённым, а затем за времяРадиоактивность и ядерные излученияс оно переходит в основное состояние с испусканием гамма-излучения. Возвращаясь в основное состояние, ядро может пройти через ряд промежуточных состояний, поэтому гамма-излучение может содержать несколько групп гамма-квантов, отличающихся значениями энергии.

Гамма-кванты, обладая нулевой массой покоя, не могут замедляться в среде, они или поглощаются или рассеиваются. Гамма-излучение не имеет заряда и тем самым не испытывает влияния кулоновских сил. При прохождении пучка гамма-квантов через вещество их энергия не меняется, но уменьшается интенсивность, согласно законуРадиоактивность и ядерные излучения(Радиоактивность и ядерные излучения— интенсивности гамма-излучения на входе и выходе слоя поглощающего вещества толщиной X, Радиоактивность и ядерные излучения— коэффициент поглощения); зависит от свойств вещества и энергии гамма-квантов.Радиоактивность и ядерные излучения

Основными процессами, сопровождающими прохождение гамма-излучения через вещество является фотоэффект, компто-новское рассеяние и образование электронно-позитронных пар (рис. 1.3).

Фотоэффектом называется процесс, при котором атом полностью поглощает гамма квант с энергией hv и испускает электрон с кинетической энергией Ek , равной


Радиоактивность и ядерные излучения


где I — энергия ионизации соответствующей атомной оболочки. Если энергия hv достаточна для вырывания электрона из любой атомной оболочки (hv >Радиоактивность и ядерные излучения), то наиболее вероятным будет испускание сильно связанных, т.е. глубинных атомных электронов. Увеличение порядкового номера z поглотителя приводит к увеличению вероятности фотоэффекта, поскольку ослабляется связь электронов с атомным остатком и возрастает число электронов в атоме. С ростом энергии hv вероятность фотоэффекта понижается.

Комптоновским рассеянием называется такой процесс, при котором гамма-квант, взаимодействуя со слабо связанным электроном, передает ему часть своей энергии hv и рассеивается под углом q к первоначальному направлению, а электрон покидает атом, обладая кинетической энергией.

Увеличение энергии гамма квантовРадиоактивность и ядерные излученияприводит к монотонному убыванию вероятности Комптон-эффекта.

Рождение электронно-позитронной пары — процесс, при котором гамма-квант превращается в пару частиц — электрон и позитрон, в результате взаимодействия с

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: