Xreferat.com » Рефераты по физике » Основные понятия, определения и законы в теории электрических цепей

Основные понятия, определения и законы в теории электрических цепей

законы в теории электрических цепей" width="575" height="71" />


1.2.3.4.

Показать диаграмму тока в RL-цепи (рис.11), при подаче на вход последовательности прямоугольных импульсов напряжения:

1.2.3.4.

Показать диаграмму напряжения на выходе RL-цепи (рис.12), при подаче на вход последовательности прямоугольных импульсов напряжения:

1.2.3.4.

Показать диаграмму тока в RL-цепи (рис.12), при подаче на вход последовательности прямоугольных импульсов напряжения:

1.2.3.4.

Показать входной ток в цепи (Рис.10) при подаче на вход единичного ступенчатого напряжения.

Основные понятия, определения и законы в теории электрических цепей1.2.3.4.

Основные понятия, определения и законы в теории электрических цепейПоказать отклик U2 цепи (Рис.9) при подаче на вход единичного ступенчатого напряжения.

1.2.: 3.4.

Показать отклик U2 цепи (Рис.10) при подаче на вход единичного ступенчатого напряжения.

1.2.3.4.

Основные понятия, определения и законы в теории электрических цепейПоказать ток в цепи (Рис.13) при подаче на вход единичного ступенчатого напряжения.

1.2.3.4.

Основные понятия, определения и законы в теории электрических цепейПоказать выходное напряжения цепи (Рис.13) при подаче на вход единичного ступенчатого напряжения.

1.2.3.4.


7. Основы теории четырехполюсников


Теория четырехполюсников позволяет проводить анализ цепи, если известны:

воздействия и параметры четырехполюсника определенные в режиме холостого хода и или короткого замыкания;

Основными уравнениями четырехполюсника называют уравнения, которые устанавливают связь, между:

откликами и воздействиями;

Основными параметрами четырехполюсника называют:

коэффициенты, входящие в основные уравнения четырехполюсника;

Число пар основных уравнений четырехполюсника:

шесть

Четырехполюсники называются пассивными, если они:

не содержат источников сигнала.

Четырехполюсники считают эквивалентными, если они:

при замене одного другим не изменяют входных и выходных токов и напряжений.

Четырехполюсники называются симметричными, если при перемене местами входных и выходных зажимов он будут функционировать так же, как и раньше;

Четырехполюсники называются автономными если они:

не содержат источников сигнала.

Четырехполюсники называются неавтономными если они:

содержат только зависимые источники сигнала.

Максимальная амплитуда напряжения на нагрузке выделяется в режиме согласования:

по напряжению

Записать условие согласования источника сигнала с нагрузкой по критерию выделения в нагрузке максимальной мощности (Рис.6).

Ri = Rн.

Записать условие согласования источника сигнала с нагрузкой по критерию получения на нагрузке максимального напряжения (Рис.6).

1. Ri = Rн.

2. Ri < Rн.

3. Ri > Rн.

4. Ri << Rн.

Записать условие согласования источника сигнала с нагрузкой по критерию получения на нагрузке максимальной мощности напряжения (рис.7).

Ri = Rн.

Записать условие согласования источника сигнала с нагрузкой по критерию получения на нагрузке максимальной мощности (рис.7).


Ri = Rн.

Условие режима холостого хода четырехполюсника на выходе:

I2=0.

Условие режима холостого хода четырехполюсника на входе:

I1=0.

Условие режима короткого замыкания четырехполюсника на выходе:

U2=0.

Условие режима короткого замыкания четырехполюсника на входе U1=0.

Показать Т-образную схему замещения:


Основные понятия, определения и законы в теории электрических цепей


1

Показать П-образную схему замещения:

2

Показать Г-образную схему замещения:

3

Показать последовательно-параллельное соединение четырехполюсников:


Основные понятия, определения и законы в теории электрических цепей


3

Показать последовательно-последовательное соединение четырехполюсников:

1

Показать параллельно-параллельное соединение четырехполюсников:

2

Показать параллельно-последовательное соединение четырехполюсников:

4

Показать каскадное соединение четырехполюсников:

5


8. Фильтры электрических сигналов


Фильтры электрических сигнала предназначены для:

Выделение сигналов в заданном диапазоне частот и подавление в остальном диапазоне.

Передачу сигнала через фильтр характеризуют:

коэффициентом передачи сигнала;

Коэффициент передачи фильтра вида 10lgK дБ характеризует передачу сигнала по:

напряжению Диапазон частот, в котором коэффициент передачи по напряжению и коэффициент затухания в идеальных фильтрах равны единице, называют:

Полоса пропускания;

Полосой пропускания для идеального фильтра называют диапазон частот в котором:

Ku(ω) =1, αu(ω) =1.

Полосой затухания для идеального фильтра называют диапазон частот в котором:

Ku(ω) =0, αu(ω) =∞.

Частота среза (граничная частота) фильтра это:

Условная частота, разделяющая полосы пропускания и заграждения, на которой коэффициент пропускания составляет 0.707 от максимального значения;

Скорость спада в полосе задержания фильтра определяется как:

–20lgKu(fгр) /Ku(10fгр).

Фильтры, которые выделяют низкочастотные составляющие сигнала, называются:

ФНЧ

Фильтры, которые выделяют сигнал только в определенном диапазоне частот, называются:

ППФ;

Фильтры, которые выделяют высокочастотные составляющие сигнала, называются:

ФВЧ;

Фильтры, которые подавляют сигналы в заданном диапазоне частот, называются:

ПЗФ.

Показать АЧХ ФНЧ (идеального).


Основные понятия, определения и законы в теории электрических цепей

1

Показать АЧХ ФНЧ (реального).


Основные понятия, определения и законы в теории электрических цепей

2

Показать АЧХ режекторного фильтра.


Основные понятия, определения и законы в теории электрических цепей

5

Показать АЧХ идеального ФВЧ.


Основные понятия, определения и законы в теории электрических цепей

3

Показать АЧХ реального ФВЧ.


Основные понятия, определения и законы в теории электрических цепей

4

Рассчитывается комплексный коэффициент передачи N-звенного фильтра, если звенья одинаковы, обладают комплексным коэффициентом передачи Ki(jω) и согласованы по напряжениям:

1. KN(jω) =Основные понятия, определения и законы в теории электрических цепей.

2. KN(jω) =Основные понятия, определения и законы в теории электрических цепей.

3. KN(jω) =F [Ki(jω)]

Как рассчитывается комплексный коэффициент передачи N-звенного фильтра если звенья одинаковы, обладают комплексным коэффициентом передачи Ki(jω), но не согласованы по напряжениям.

1. KN(jω) =Основные понятия, определения и законы в теории электрических цепей.

2. KN(jω) =Основные понятия, определения и законы в теории электрических цепей.

3. KN(jω) =F [Ki(jω)]

К какой группе фильтров относятся схемы, приведенные на рисунках:

Основные понятия, определения и законы в теории электрических цепей

ФНЧ

К какой группе фильтров относятся схемы, приведенные на рисунках:


Основные понятия, определения и законы в теории электрических цепей


ФВЧ

К какой группе фильтров относятся схемы, приведенные на рисунках:


Основные понятия, определения и законы в теории электрических цепей


ПФ

К какой группе фильтров относятся схемы, приведенные на рисунках:


Основные понятия, определения и законы в теории электрических цепей


РФ


9. Цепи с распределенными параметрами


Под термином "цепи с распределенными параметрами" понимают:

1. Цепи, геометрические размеры элементов которых соизмеримы или больше длины электромагнитной волны сигнала, проходящего по ним;

2. цепи, геометрические размеры отдельных элементов которых много меньшие длины электромагнитной волны сигнала, проходящего по ним;

3. цепи, в которых отдельные элементы могут выполнять ряд различных функций;

2. Под термином "цепи с сосредоточенными параметрами" понимают:

1. Цепи, геометрические размеры элементов которых соизмеримы или больше длины электромагнитной волны сигнала, проходящего по ним;

2. цепи, геометрические размеры отдельных элементов которых много меньшие длины электромагнитной волны сигнала, проходящего по ним;

3. цепи, в которых отдельные элементы могут выполнять ряд различных функций;

3. Волна от источника сигнала в бесконечной длинной линии распространяется в:

1. В обе стороны от источника;

2. в направлении перпендикулярном длинной линии;

3. в одну сторону от источника сигнала;

Волна от источника сигнала в полубесконечной длинной линии распространяется в:

1. В обе стороны;

2. в направлении перпендикулярном длинной линии;

3. в одну сторону;

Под термином "длинная линия" понимают:

1. линию связи, которую необходимо рассматривать как цепь с распределенными параметрами.

2. линию связи, которую необходимо рассматривать как цепь с сосредоточенными параметрами.

3. цепи, геометрические размеры отдельных элементов которых много меньшие длины электромагнитной волны сигнала, проходящего по ним;

Длинную линию называют однородной если:

1. погонные параметры зависят от координаты х;

2. погонные параметры не зависят от координаты х;

3. погонные параметры зависят от времени;

4. погонные параметры не зависят от времени.

Длинную линию называют неоднородной если:

1. погонные параметры зависят от координаты х;

2. погонные параметры не зависят от координаты х;

3. погонные параметры зависят от времени;

4. погонные параметры не зависят от времени.

В длинной линии без потерь погонные параметрыe удовлетворяют условиям:

1. L0=G0=0, 2. C0=R0=0, 3. R0=G0=0, 4. R0 >0, G0. >0, В длинной линии с потерями погонные параметры удовлетворяют условиям:

1. L0=G0=0, 2. R0=G0=0, 3. R0 >0, G0. >0, 4. L0=C0=0.

В бесконечной длинной линии возникает:

1. Две волны: падающая и отраженная;

2. Две волна: прямая и обратная;

3. Одна волна – падающая;

4. Одна волна – отраженная.

В полубесконечной длинной линии возникает:

1. Две волны: падающая и отраженная;

2. Две волна: прямая и обратная;

3. Одна волна – падающая;

4. Одна волна – отраженная.

В длинной линии конечной длины возникает:

1. Две волны: падающая и отраженная;

2. Две волна: прямая и обратная;

3. Одна волна – падающая;

4. Одна волна – отраженная.

К волновым параметрам длинной линии относятся:

1. Погонные.

2. Волновое число, волновое сопротивление, коэффициент распространения.

3. Коэффициент бегущей волны и коэффициент стоячей волны.

4. Коэффициенты отражения

К первичным параметрам длинной линии относятся:

1. Погонные.

2. Волновые.

3. Коэффициент бегущей волны и коэффициент стоячей волны.

4. Коэффициенты отражения.

К вторичным параметрам длинной линии относятся:

1. Погонные.

2. Волновые.

3. Коэффициент бегущей волны и коэффициент стоячей волны.

4. Коэффициенты отражения.

К погонным параметрам длинной линии относятся:

1. параметры, отнесенные к единице длины линии.

2. Волновые.

3. Коэффициент бегущей волны и коэффициент стоячей волны.

4. Коэффициенты отражения.

Вследствие интерференции падающей и отраженной волн возникает:

1. Изменение частоты отраженной волны;

2. Узлы и пучности;

3. Изменение направления распространения отраженной волны.

В полубесконечной длинной линии возникает режим:

1. бегущих волн;

2. отраженных волн;

3. поглощенных волн;

4. стоячих волн;

В линии конечной длины при работе на согласованную нагрузку возникает режим:

1. бегущих волн;

2. Режим отраженных волн;

3. Режим поглощенных волн;

4. Режим стоячих волн;

В линии конечной длины, работающей на короткозамкнутую нагрузку, возникает режим:

1. бегущих волн;

2. отраженных волн;

3. поглощенных волн;

4. стоячих волн;

В нагрузке максимальная мощность сигнала выделяется в режиме:

1. бегущих волн;

2. отраженных волн;

3. поглощенных волн;

4. стоячих волн;

В каком режиме в длинной линии отсутствуют отражения 1. В режиме стоячих волн.

2. В режиме бегущих волн.

3. В режиме смешанных волн.

4. В режиме стоячих волн и бегущих волн.

В длинной линии без потерь конечной длины режим бегущих волн возникает, когда нагрузка:

1. Резистивная и равна волновому сопротивлению линии.

2. Комплексная.

3. Индуктивная.

4. Резистивная, меньшей волнового сопротивления линии.

5. Резистивная, большей волнового сопротивления линии.

В длинной линии без потерь конечной длины возникает режим смешанных волн, когда нагрузка:

1. Резистивная и равна волновому сопротивлению линии.

2. Комплексная или резистивная не равная волновому сопротивлению.

3. Реактивная.

В длинной линии без потерь конечной длины возникает режим стоячих волн, когда нагрузка:

1. Резистивная и равна волновому сопротивлению линии.

2. Комплексная.

3. Реактивная.

4. Резистивная, меньшей волнового сопротивления линии.

5. Резистивная, большей волнового сопротивления линии.

Коэффициентом отражения по напряжению называется:

1. рu=Ủотр/Ủпад.

2. К = Um min/ Um max

3. рu= Ủпад/ Ủотр.

4. К = Um max /Um min

Коэффициентом бегущей волны называется:

1. рu=Ủотр/Ủпад.

2. К = Um min/ Um max

3. рu= Uпад/ Uотр.

4. К = Um max /Um min

Коэффициентом стоячей волны называется:

1. рu=Ủотр/Ủпад.

2. К = Um min/ Um max

3. рu= Uпад/ Uотр.

4. К = Um max /Um min

Коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии нагруженной на волновое сопротивление равны:

1. КБВ=1, рu=1.

2. КБВ=0, рu=0.

3. КБВ=0, рu=1.

4. КБВ=1, рu=0.

Коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии в режиме бегущих волн равны:

1. КБВ=1, рu=1.

2. КБВ=0, рu=0.

3. КБВ=0, рu=1.

4. КБВ=1, рu=0.

Коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии разомкнутой на конце равны:

1. КБВ=1, рu=1.

2. КБВ=0, рu=0.

3. КБВ=0, рu=1.

4. КБВ=1, рu=0.

5. КБВ=0, рu=-1.

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии в режиме стоячих волн.

1. КБВ=1, рu=1.

2. КБВ=1, рu=0.

3. КБВ=0, рu=1.

4. КБВ=1, рu=0.

5. КБВ=1, рu=-1.

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии короткозамкнутой на конце.

1. КБВ=1, рu=1.

2. КБВ=0, рu=0.

3. КБВ=0, рu=1.

4. КБВ=1, рu=0.

5. КБВ=0, рu=-1.

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии нагруженной на реактивное сопротивление.

1. КБВ=1, рu=1.

2. КБВ=1, рu=1.

3. КБВ=0, рu=1.

4. КБВ=0, рu= а+ jb.

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии в режиме смешанных волн.

1.0<КБВ<1, | рu | <1.

2. КБВ=1, рu=1.

3. КБВ=1, рu=1.

4. КБВ=0, рu=а+ jb

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии нагруженной на резистивное сопротивление больше волнового.

1.0<КБВ<1, | рu | <1.

2. КБВ=1, рu=1.

3. КБВ=1, рu=1.

4. КБВ=0, рu=а+ jb

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии нагруженной на резистивное сопротивление меньше волнового.

1.0<КБВ<1, | рu | <1.

2. КБВ=1, рu=1.

3. КБВ=1, рu=1.

4. КБВ=0, рu=а+ jb

Чему равны коэффициент бегущей волны (КБВ) и коэффициент отражения по напряжению рu в линии нагруженной на комплексное сопротивление.

1.0<КБВ<1, | рu | <1.

2. КБВ=1, рu=1.

3. КБВ=1, рu=1.

4. КБВ=0, рu=а+ jb

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: