Xreferat.com » Рефераты по физике » Катод Спиндта

Катод Спиндта

Саратовский государственный университет

Им. Н.Г.Чернышевского


Курсовая работа


Катод Спиндта.


Кафедра Прикладной физики


Научный руководитель:

Мухамедов Р.Ф.

Выполнил студент 5 курса

535гр. Физ. Факультета:

Ярославкин Ю.А.


САРАТОВ 2001.


Содержание:


  1. Введение.

  2. Автоэлектронная эмиссия.

  3. Тонкоплёночные автоэмиссионные катоды. Технология и особенности протекания эмиссионных процессов.

  4. Технология изготовления катодов Спиндта.

  5. Плотность упаковки эмиттеров.

  6. Время жизни.

  7. Заключение.

  8. Список литературы.

Введение:


Стремительное развитие деловой жизни и появление новейших цифровых информационных технологий и устройств отображения информации заставляют разработчиков третьего тысячелетия совер-шенствовать способы отображения и передачи информации .

Вакуумная микроэлектроника во многом определила пути реализации самых смелых идей в использовании информационного пространства. Современного пользователя невозможно представить без компьютера и программ, на базе которых строятся современные исследования, разработки и использование мирового информационного пространства, позволяющего двигать науку .

Конечно, историю науки пишут сами люди науки. Поэтому никак не избежать субъективного подхода к изложению дате одних и тех же фактов, к подбору «значительных событий», к оценке значительности того или иного специалиста, той или иной работы для развития научного направления: ведь есть пророни своем отечестве

о которых не знают в отечествах других .


Основной доклад на первой международной конференции по вакуумной микроэлектроники сделал Айвор Броди – один из основоположников этого направления. По мнению Броди вакуумная микроэлектроника приобрела большое значение благодаря двум факторам общего характера:

  1. Возросли требования, которым уже не могут удовлетворить твёрдотельные приборы, даже после огромных исследовательских затрат, и, кроме того,

  2. Специалисты пришли к выводу, что отнюдь не будет непрактичным делать вакуумные лампы микронных и субмикронных размеров.

Как же по Айвору Броди развивалась вакуумная микроэлектроника? Он выделяет четыре основных пути её развития, которые привели к сегодняшнему состоянию.

В начале 20-х годов нашего столетия пробой заявил о себе в периодических срывах трансатлантических радиопередач, осуществляемых с помощью высоко мощных ламп Маркони. Госслинг, работавший у Маркони, исследовал этот эффект и в 1926 году опубликовал работу, в которой высказал гипотезу, что пробой вызывается электронами с выпуклостями на вольфрамовом стержневом катоде. Эти выпуклые неоднородности взрывались, вызывая пробой. Как пишет Броди, обсуждение этих результатов с профессором Фаулером из Кембриджского университета привело к Нордгейму, получившему средства на исследования, и, в конечном счете, к уравнению Фаулера – Норд гейма. Открытие того, что электроны могут вылетать с холодных катодов под действием электрических полей с высокой напряжённостью, вызвало множество проектов приборов, но прошло более сорока лет, прежде чем что-то получилось.


Настоящая работа посвящена особенностям технологии изготовления катодов Спиндта , основанная на методе создания решеток автокатодов, с использованием тонкопленочной технологии и электронно-пучковой литографии.

Решетки автоэмиссионных катодов, изготовленных из монокристаллов кремния с применением тонких металлических пленок, обладают техническими характеристиками, позволяющими их широкое применение в плоских дисплеях, сканирующих микроскопах и т.п.


Автоэлектронная эмиссия.


Автоэлектронная эмиссия (АЭ) - физическое явление, состоящее в том, что электроны покидают твёрдое тело, в котором они находятся в качестве свободных носителей заряда (это может быть металл или полупроводник), под действием сильного электрического поля, приложенного к поверхности. В случае автоэлектронной эмиссии электроны преодолевают потенциальный барьер на поверхности тела не за счет кинетической энергии теплового движения, а путем специфического квантового явления – туннельного эффекта.

В простейшем случае туннельный эффект заключается в том, что микроскопическая частица, первоначально находившаяся по одну сторону потенциального барьера (то есть области пространства, для которой полная энергия частицы превышает её потенциальную энергию Uсх), может с конечной вероятностью быть обнаружена по другую сторону барьера.

Туннельный эффект является чисто квантовым феноменом и для него отсутствует аналог в классической механике. Согласно Ньютновской механике частица с массой m не может находиться внутри потенциального барьера, поскольку из уравнения для полной энергии следует,

(1)

что соотношение выполняется только для мнимых значений импульса р. Объяснение туннельного эффекта, в конечном счёте, связано с соотношением неопределённости Гейзенберга, согласно которому квантовая частица находиться в состоянии с одновременно точно определёнными координатой и импульсом.

Неопределённости и всегда удовлетворяют соотношению

, (2)

где эргс – постоянная Планка.

Согласно этому принципу, слагаемые в правой части уравнения (1) не имеют одновременно определённых значений и могут отличаться от своих средних значений. Поэтому имеется конечная вероятность обнаружить квантовую частицу в запрещённой зоне с точки зрения классической механики области.

Туннельный эффект был одним из первых квантовых явлений, предсказанных после создания в 1926 году Э. Шредингером волновой механики. По всей видимости, первое свидетельство его существования можно найти в статье Л. И. Мандельштама и М. А. Леонтовича, которые рассматривали решение уравнения Шредингера для


модельного потенциала ангармонического осциллятора вида

при и при .

Волновая функция, описывающая свободное движение частицы слева от потенциала (при x>a). При этом, когда энергия частицы близка к значениям дискретных уровней энергии внутри потенциальной ямы, амплитуда волновой функции справа от нее резко возрастает. Это явление на современном языке носит название резонансного прохождения через потенциальный барьер.

В 1928 году Г. Гамов с помощью туннельного эффекта объяснил явление - радиоактивности тяжёлых ядер, и в том же году Фаулер и Норд гейм построили теорию холодной эмиссии из поверхности металлов. Туннельный эффект лежит в основе объяснения таких явлений, как слияние лёгких ядер при термоядерных реакциях, работы сверхпроводящего перехода Джозефсона и туннельного диода. Именно Фаулер вместе с Нордгеймом в том же 1928 году построили теорию холодной эмиссии (автоэлектронной эмиссии) с поверхности металлов.

На рис.1 приведен график потенциальной энергии электрона вблизи границы металл – вакуум при отсутствии внешнего поля и при наличии слабого и сильного внешних полей в зависимости от расстояния от поверхности металла.


U(x)


x

Уровень Ферми. 1

2


Энергетические урони, d

заполненные электро-

нами. 3


металл вакуум


Кривые 1,2 и 3 соответствуют

случаям отсутствия внешнего

поля, слабому полю и

сильному полю: d-ширина

барьера. По мере увеличения

внешнего положительного

поля понижается

высота потенциального

барьера над уровнем Ферми

и уменьшается его ширина.

Следовательно, увеличивается

вероятность проникновения

через барьер электронов,

подлетающих к нему со

стороны металла.

Иными словами ,

увеличивается число Рис.1 Поверхностный потенциальный барьер на границе

раздела металл–вакуум.

электронов, проходящих через барьер, то есть ток автоэмиссии. Подчеркнем, что в случае автоэмиссии с поверхности металла, электрическое поле не проникает в глубь него и не влияет на движение электронов в металле. Роль внешнего поля сводиться только к изменению формы потенциального барьера, уменьшению его высоты и ширины.


Тонкопленочные автоэмиссионные катоды

Технология и особенности протекания эмиссионных

процессов.

Исключительно важной для всего развития вакуумной микроэлектроники стала статья Спиндта с сотрудниками из Стэндфордского исследовательского института, опубликованная в 1976 году в журнале Journal of Applied Physics. В ней был описан метод создания решёток автокатодов с молибденовыми остриями с использованием тонкоплёночной технологии и электронно-пучковой микролитографии, а также были приведены результаты подробного экспериментального исследования полученных автокатодов. Разработанная технология позволяла изготавливать катоды, содержавшие до 5000 острий с радиусом скругления около 500 A и плотностью упаковки примерно

Тонкоплёночный катод с полевой эмиссией представляет собой сэндвич: проводник-изолятор (рис.2) . Верхний проводник или сетка имеет отверстие от 1 до 3 мкм в диаметре, сквозь которое протравлено отверстие до нижнего проводника. На подложке находится конусообразный эмиттер, его вершина располагается в отверстии сеточной пленки. Размеры для одного из изготовленных катодов приведены на рисунке.



0,4 мкм 1,5мкм


2


1,5мкм



3

3






4



Рис. 2 Схематическое изображение тонкоплёночного автоэмиссионного катода Спиндта.


  1. Молибденовый конус

  2. Изолирующий слой из диоксида кремния

  3. Молибденовая управляющая плёнка

  4. Кремневая подложка.


Перспективным применением изделий вакуумной микроэлектроники представляется разработка плоских панельных дисплеев. Обеспечивающих высокое качество изображения и яркости ( в том числе и для цветного телевидения). Кремний –очень удобный материал для изготовления автоэмиссионных катодов. Поиск новых материалов, подходящих для создания автокатодов, ведется непрерывно.


Технология изготовления катодов Спиндта заслуживает

особого внимания. Она состоит из нескольких этапов.


  1. Получение стандартной высокопроводящей подложки из кремния. Эта подложка покрывается затем оксидной плёнкой кремния требуемой толщины (1,5мкм) с помощью техники окисления.

  2. Методом электронно-лучевого напыления на окисел наносится тонкая плёнка молибдена толщиной 0,4мкм.

  3. Эта структура покрывается полиметилметакрилатом (ПММ) – высокополимерным соединением, которое представляет собой электронночувствительное сопротивление. Толщина пленки (ПММ) примерно 1мкм.

  4. Поверхность ПММ экспонируется в вакууме сфокусированными электронными пучками, формируя на ней пятна нужного диаметра и необходимой конфигурации. Пятна обычно имели диаметр около 1мкм и располагались в узлах квадратной решётки с шагом 25,4мкм или 12,4 мкм.

  5. Экспонированные участки растворяются в изопропиловом спирте, а затем происходит травление лежащего ниже этих участков слоя молибдена до диэлектрика.

  6. Удаляются остатки ПММ, и слой диэлектрика травится плавиковой кислотой до кремневой подложки. В результате образуется структура, показанная на рис.3.1. Плёнка молибдена слегка нависает над отверстием в диэлектрике, так как кислота не действует на молибден.

  7. Методом вакуумного напыления на молибден наносится плёнка алюминия. При этом образец непрерывно вращается вокруг вертикальной оси, и напыление происходит под большим углом к ней. Это делается, чтобы предотвратить попадание алюминия в сетке. Размер отверстия уменьшается до необходимой величины (рис. 3.2.).

  8. Через частично закрытое отверстия производится напыление молибдена, при этом внутри отверстия вырастает конус необходимого размера и высоты. Вершина конуса формируется, когда отверстие полностью закрывается. Эта стадия процесса показана на рис. 3.3.

  9. Вспомогательный слой алюминия растворяется, находящийся на нем молибденовая пленка удаляется (рис. 3.4.). После термической тренировки в вакууме катод готов к применению.


Р

2мкм


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: