Xreferat.com » Рефераты по физике » Гідродинамічне глісування

Гідродинамічне глісування

Курсова робота

Тема: Гідродинамічне глісування


Зміст


Вступ

1 Перші гідродинамічні теорії глісування

1.1 Динамічна підйомна сила

1.2 Методи оцінки гідродинамічних сил

1.3 Двовимірна теорія глісування

2 Вплив форми профілю на вирішення основних гідродинамічних задач

3 Комп’ютерні методи визначення гідродинамічних характеристик глісуючого комплексу

4 Основні гідродинамічні характеристики

4.1 Додатковий опір

4.2 Максимальна осадка судна

5 Режими глісування гідролітаків

6 Досягнення високих швидкостей суден шляхом застосування підводних крил

7 Теорії дослідження високошвидкісних суден

8 Розподіл енергії та використання енергії хвиль

Висновок

Перелік посилань


Вступ


В сучасних умовах існування людство зіткнулося з величезною проблемою – екологічною. Проблема екологічної катастрофи вже не просто не приваблива перспектива, а реальна загроза, що повисла над усім живим. Ця проблема проявляється в двох важливих аспектах: по-перше, це забруднення навколишнього середовища промисловими, транспортними викидами, по-друге, вичерпність ресурсів планети, в основному паливних ресурсів. Особливо гостро ця проблема стоїть в енергетиці та транспорті, оскільки саме в цих галузях активно використовуються паливні ресурси планети. При їх спалюванні утворюються шкідливі викиди, які потрапляють у повітря, воду, ґрунт, і цим самим забруднюють середовище нашого існування. Одним з рішенням цієї проблеми є створення екологічно чистих двигунів, нових економічних типів рушіїв, а також використання альтернативних джерел енергії. Варто пригадати прислів’я: „Чисто не там де прибирають, а там де не смітять”. Тому використання екологічно-чистих джерел енергії завжди буде займати провідне місце в галузі енергетики. У всьому світі активно проводяться дослідження по можливості використання альтернативних джерел енергії - сонячної, енергії вітру, морських хвиль та ін.

Проблема економії палива та використання альтернативних джерел енергії особливо актуальна для транспорту, зокрема водного. Тут особливу роль грає використання енергії хвиль, як додаткового джерела тяги в умовах природного хвилювання і використання (регенерації) хвильової енергії при русі в хвильовому сліді.

Судно, призначене для плавання в морських чи озерних басейнах, значну частину своєї діяльності проводить в умовах більшого чи меншого хвилювання. Хвилювання представляє собою одну з форм переносу механічної енергії, запас якої практично невичерпний. Наприклад, для судна довжиною м, на хвилі, довжина якої дорівнює м і амплітуда м, безперервно протікає потік енергії по потужності рівній невеликій промисловій електростанції. Необхідно хоча б частину цієї енергії передати судну. Для цього необхідно забезпечити таку конструкцію дна судна, при якій опір води був би мінімальний а регенерація хвильової енергії максимальна.

Практична реалізація принципу регенерації і використання енергії залежить від розв’язання багатьох теоретичних і технічних задач – від створення аналітичних приладів, які оперативно реєструють параметри хвилі, до систем автоматичного керування роботою комплексу. Однак головною залишається теоретична задача визначення всіх гідромеханічних параметрів при русі глісуючого комплексу.

Дані теоретичних досліджень гідродинамічних характеристик глісування систем пластин також необхідні при конструюванні швидких багатореданних суден, систем злету та посадки гідролітаків, вивчення та прогнозування режимів буксирування суден, вантажних платформ та ін.


1 Перші гідродинамічні теорії глісування


1.1 Динамічна підйомна сила


Перші спроби наукового вивчення глісування відносяться до періоду 1912-1914 років, однак серйозний розвиток цих робіт почався з кінця 20-х та початку 30-х років.

Розробка теорії глісування, яка дала пояснення фізичній суті механізму глісування і дозволяла отримати цілий ряд важливих висновків та кількісних співвідношень, була закінчена в 1931 році.

Ця теорія встановила наступний погляд на явище глісування та на його головну особливість – виникнення динамічної підйомної сили.

При русі поверхні глісера, встановленої під малим кутом до напрямку руху, маси води відтісняються нею донизу та в сторони. Для подолання інерції, яка приводить в рух маси води, повинна бути прикладена сила, направлена в сторону прискорення цих мас, а на глісуючій поверхні виникає рівна їй і протилежно направлена реакція. Вертикальна складова цієї реакції уявляє динамічну підйомну силу. Величина цієї сили визначається проекцією на вертикаль вектору кількості руху мас води, які щосекунди створюються.

З цих основних уявлень безпосередньо витікає, що при незмінній формі і положенню глісуючої поверхні динамічна підйомна сила повинна зростати зі зростанням швидкості. Теорія глісування враховує також і гідростатичні сили, які відбуваються внаслідок вагомості води; рівнодіюча цих сил представляє статичну підйомну силу, і дія її складається з дією динамічної сили.

Основи лінійної теорії глісування по поверхні невагомої рідини закладені Г. Вагнером. Вони викладені в його статтях [1], опублікованих в 1930-32 рр. Вагнер показав, що в основній області нижньої частини крила і глісуючої пластини при малих кутах a (практично до a =8 ё 10°) розподіл швидкості і тиску однаковий. Область бризкоутворення відіграє незначну роль у формуванні результуючої сил тиску, які діють на пластину, тому глісуюча пластина відчуває таку ж силу, як нижня частина крила. Даний висновок слугує базою для переносу багатьох результатів, отриманих в теорії крила, в область досліджень глісуючих поверхонь.

Для оцінки підйомної сили Ry та опору Rx , які діють на одиницю ширини плоскої або слабко зігнутої глісуючої пластини нескінченного розмаху в невагомій нев’язкій рідині, справедливі наступні формули:


, (1)


, (2)


де l – змочена довжина пластини, ес – стрілка прогину. Згідно формулі (1) поздовжній прогин пластини може чинити істотний вплив на підйомну силу, причому дія його еквівалентна відповідній зміні кута атаки a .

Рішення задачі про глісування пластини на поверхні важкої рідини вперше вдалося отримати Л. І. Сєдову в 1936 р. Задача ставилася як лінійна, кут атаки вважався малим, граничні умови на пластині і вільній поверхні зносилися на відрізки горизонтальної осі ОХ. Дослідження глісування слабко зігнутого контуру по поверхні важкої рідини зводиться до визначення потенціалу швидкості збуреної течії, яка відповідає умові постійності тиску на вільній поверхні, непротікання на контурі, відсутності вільних хвиль далеко попереду контурі викликаних швидкостей на нескінченно великій глибині [2].

При глісуванні пластини по поверхні важкої рідини підйомна сила може бути визначена по формулі Л. І. Сєдова:

, (3)


.


Як видно з відношення (3), вплив вагомості рідини проявляється у зменшенні підйомної сили. Зі зростанням швидкості (Fr ® Ґ) формула (3) переходить у формулу (1). Чисельні розрахунки, проведені Ю. С. Чаплигіним, показали, що результати теорії глісування по поверхні невагомої рідини і теорії глісування по поверхні важкої рідини повністю співпадають при числах Fr і 4,25.

На сьогоднішній день плоскі нелінійні задачі теорії глісування розглядаються у відповідності з наступною схемою: потік, який набігає на пластину, розміщену під довільним кутом атаки по відношенню до напрямку швидкості на нескінченності, роздвоюється – основна його частина проходить під пластиною, а в протилежному напрямку вздовж пластини тече струмінь кінцевої товщини. Змочена довжина пластини не задається, а визначається в процесі рішення. Рішення зводиться до знаходження комплексної характеристичної функції і викликаної комплексної швидкості і здійснюється шляхом конформного відображення області течії на яку-небудь область з відомими межами, наприклад півколо чи півплощина.

Рух рідини умовно розбивається на дві області: внутрішню – поблизу пластини і зовнішню – удалині від неї. В кожній з цих областей будуються свої асимптотичні розклади.

У внутрішній області, де переважають інерційні сили над вагомістю, використовується розглянуте вище класичне рішення плоскої нелінійної задачі. В якості рішень для зовнішньої області, де переважає вплив вагомості, використовується рішення задачі про гравітаційні хвилі, викликані вихреджерелом, який рухається по вільній поверхні. Після об’єднання обох розкладів по певним правилам в області “загальної придатності” отримується рівномірно придатне у всьому потоці, єдине рішення задачі. В такій постановці кут атаки необмежений, і може бути заданою глибина занурення.


1.2 Методи оцінки гідродинамічних сил


До 1960-х теоретичні дослідження проблеми глісування були зведені головним чином до лінеаризованого двовимірного глісування (Ламб 1932, Грін 1936, Маріо 1951, Сквайр 1957, Кумбербатч 1958). Підходи, застосовані в цих вивченнях були подібні, тобто, невідомий розподіл тиску на глісуючій поверхні зв’язувався з її геометрією інтегральним рівнянням, але методи для оцінки інтегралу дуже різноманітні. Тривимірної задачею глісування займалися в 1960-их, але завжди з обмеженнями або в швидкості глісування, або в відносному подовженні глісуючої поверхні (Маріо 1967, Ванг та Рісмей 1971, Шен та Огільві 1972, Так 1975). Докторс (1975) був першим в вивченні тривимірного глісування без цих обмежень. [3] У його підході, були прийняті кінцеві елементи тиску для того, щоб представляти змочені області глісуючої поверхні, а у повторюваній процедурі, змочена область була пристосована так, щоб задовольнити умову Кута для задньої кромки до тих пір поки вона нарешті досягне постійного значення. Але розподіли тиску, отримані таким чином були сильно осцилюючі. Веліком та Джахангір (1978) і пізніше Тонг (1989) задали змочену область заздалегідь, потім обчислили розподіл тиску та форму транцю. Коливання тиску, які відкрив Докторс, уникались коли число батокса було не більше п’яти або шести, в іншому випадку вони все ще відбувалися б. Вважалось, що причина таких коливань була в розривах тиску на бокових гранях постійного елементу тиску, який використовувався, для збудження високо-нерегулярного підйому вільної поверхні в області біля бокових граней і їх потоків, і отже вносить великі сумніви в умову границі корпусу.

В роботі Ченга-Велькома [4] запропоновано метод для оцінки гідродинамічних сил на глісуючому судні без обмежень на відносне подовження та швидкості глісування. Автори використали поперечні смуги змінного тиску для представлення глісуючого корпусу для вирішення проблеми неоднорідності тиску на бокових гранях, таким чином можна уникнути коливання тиску, яке викликане цією неоднорідністю. Тиск по кожній смузі виражався рядом синусів, перевага якого полягає в тому, що математичні формулювання для кожного невідомого ряду ідентичні. Відповідно до цього методу, глісування судна з постійною швидкістю U по спокійній воді можна показати на прикладі глісування стаціонарного судна, представленого сукупністю смуг тиску на поверхні однорідного вхідного потоку зі швидкістю U. При цьому були використані припущення, що рідина є нев’язкою і нескінченної глибини, а хвилювання головного потоку викликані судном – маленькі.

Хоча існуючий підхід розроблений для тривимірного глісування, двовимірні задачі можна розглядати, як тривимірні з високим відносним подовженням. Теоретично, дана теорія може застосовуватися до тривимірних глісуючих поверхонь довільних профілів, з заданими змоченими площами. У більшості випадків, однак, змочена площа глісуючого корпусу невідома заздалегідь і з цієї причини в даній теорії застосований зворотний метод, у якій змочена площа запропонована заздалегідь, у той час як профіль транцю визначений як частина рішення.

Автори нехтували нелінійне явище бризку передньої кромки, оскільки вона має маленьку товщину і робить незначний внесок у розподіл тиску в області бризку. Фактично, це - високий тиск в області бризку, тобто, в області передньої кромки, яка створює бризок.

Проблема, пов’язана з глісуванням полягає в тому, що змочена площа корпуса невідома до того, коли визначається гідродинамічна сила. Хоча, для того, щоб вирішити цю проблему можна застосувати процедуру повторення. Але це займає багато часу і в результаті можна отримати коливальний розподіл тиску, який знайшов Докторс (1975). Тому була запропонована змочена площа корпусу, який спроектовано на середину вільної поверхні, у той час як глибина занурення та форма транцю позначені як невідомі. Використання умови Кута на кромці транцю забезпечило додаткові рівняння, які використовувалися для визначення форму кромки транцю. Недолік цього підходу полягає в тому, що запропонована змочена площа не може дати точну форму транцю. Для даного глісуючого корпусу, обчислення повинні бути виконані для ряду запропонованих змочених площин, а інтерполяція повинна проводитися так, щоб отримати рішення для корпуса.

Проведені в роботі числові обчислення для глісуючих поверхонь двовимірної плоскої пластини, параболічної пластини, кубічної пластини і тривимірної плоскої пластини дали результати, які при порівнянні з експериментальними даними або іншими теоріями показали вдалість даного підходу для досягнення збіжності рішень без накладання будь-яких обмежень на відносне подовження або на число Фруда. [4]


1.3 Двовимірна теорія глісування


Двовимірне глісування характеризується гладеньким відокремленням водного потоку на задній кромці глісуючої поверхні і бризканням на передній кромці змоченої частини глісуючої поверхні. Відокремлення потоку відповідає потоку на передній кромці в класичній теорії повітряного крила.

Бесшо і Коматсу проаналізували двовимірну неустановлену задачу плоскої глісуючої поверхні, базуючись на теорії повітряного крила. Відповідно до цієї теорії вага глісеру при русі на великих швидкостях підтримується насамперед гідродинамічним підйомом, який виникає на його нижній стороні, а не гідростатичною плавучістю. [5]

Явище глісування має багато аналогій із проблемами аеродинамічного підйому крил, і таким чином багато досліджень глісування є подібними до досліджень потоку навколо повітряного крила. Однак, присутність вільної поверхні вносить два важливих ефекти, які не можуть ігноруватися в повному обчисленні глісування: по-перше, велика відстань вверх за течією – дуже спеціальний початковий рівень, висота незбуреної вільної поверхні, на якій визначає спеціальний напрямок течії: тиск постійний вздовж кожного з цих напрямків; по-друге, внизу за течією глісуючої поверхні виникатимуть гравітаційні хвилі, які не мають ніякого аналога в аеродинамічній задачі. Навіть перший із цих ефектів, існування єдиної горизонтальної поверхні вверх за течією, є наслідком існування гравітаційності, іншими словами не має вільної поверхні. Вплив гравітації на вільному потоці в окружності глісуючого човна ймовірно досить незначний, і можна припустити, що існування хвиль за човном мало впливає на нелінійний потік біля човна. У двовимірних задачах, відомо, що цей підхід веде до неприємності: рішення проблеми вільного напряму не єдине і жоден з можливих рішень не має прийнятного поводження на нескінченності; вони всі передбачають, що вільна поверхня зменшується, знижується логарифмічно далеко вверх за течією й далеко вниз за течією.

Не єдиність - загальна особливість потоків Гельмгольця. Для включення гравітаційності у двовимірну задачу було зроблено багато спроб. Більшість цих спроб було зроблено в межах структури лінеаризованої водної теорії хвилі. Якщо кут атаки глісуючої поверхні надзвичайно маленький, Вагнер показав, що нелінійність біля точки застою могла бути зосереджена в сингулярність, і струя (або бризок) кинута вперед може ігноруватися, тому що її товщина зменшується із квадратом кута атаки. При великих числах Фруда ця задача була проаналізована неодноразово протягом декількох десятиліть.[6] Для не таких маленьких кутів атаки проблема швидко стає занадто нелінійною для апроксимації повністю лінійними теоріями, навіть із включенням сингулярності для врахування нелінійних ефектів.[7]

Практичне застосування двовимірної теорії глісування обмежені, але мають місце. Наприклад – злет гідролітака. Протягом короткого часу, безпосередньо перед тим, як гідролітак відривається від води водний потік майже двовимірний. Передбачається, що відносне подовження прямує до нескінченності, оскільки змочена довжина прямує до нуля. Відмічалось, що цей короткий проміжок часу критичний при злеті, оскільки потік очевидно нестійкий. [8] Експериментальні результати дослідження цієї нестійкості представив Мотард.[9] Гідродинамічні характеристики невстановленого руху також дуже важливі для проектування суден.

Усталеним двовимірним глісуванням плоскої пластини займалися багато вчених. Грін вирішив цю задачу для кінцевого кута атаки без врахування гравітаційності. Нехтування гравітаційності приводить до аномальних результатів відокремлення вільної поверхні в дальній області пластини. В рішення Гріна відокремлення вільної поверхні логарифмічно направлене в нескінченність. При великих числах Фруда ефект гравітаційності приймається маленьким в ближній області, але аномалія в дальній області все ж залишається. Нехтування ефектами гравітаційності в ближній області розглянуто Шеном та Огільві (1971).

Теорія запропонована авторами [8] – узагальнена теорія Сєдова [2]. Вона базується на часовому аналізі. Це передбачає, що вхід у воду і переміщення пластини при великих числах Фруда може бути проаналізовано в межах даної теорії. Двовимірна гідродинамічна крайова задача глісування плоскої пластини представляє собою задачу входу в воду, вважаючи передню швидкість U великою. Відносно пластини передня швидкість має вигляд швидкості вільного потоку. Граничні умови тіла при цьому переносяться до прямої горизонтальної лінії.

Різноманітні задачі водного руху з врахування гравітаційності розглянуто в [6]. Окрім того, майже у всіх представлених випадках враховано наявність поверхні, яка розділяє дві рідини з різною питомою вагою, або, якщо присутня тільки одна рідина, так звані вільні поверхні.

Для вирішення задачі використовується прямокутна система координат. Вісь Y приймається направлена протилежно до сили тяжіння, осі х і z утворюють правобічну систему координат. Для отримання рівняння руху виконують диференціювання фундаментальних рівнянь, які описують водний рух. Математична модель складається з граничних умов – граничних умови на поверхні розділення (динамічні та кінематичні умови), граничних умов на твердій поверхні та інших граничних умов, які включають в себе геофізичні умови, тобто умови, які передбачають наявність поверхні розділення між рідиною та пружним середовищем. Наприклад, вивчення ефекту океанських хвиль, наявність крижаного покриву або на поверхні розділення між двома рідинами, які відокремлені одна від іншої пружною мембраною чи пластиною. Кінематична гранична умова повинна виконуватись завжди. Динамічні умови залежать від природи припущень.

Більшість теорій водних хвиль займаються або поясненням деяких загальних видів хвильового руху, або передбаченням поведінки хвиль. Нажаль, навіть деякі з найпростіших задач виявились надто складними для вирішення в більш повній формуліровці. Для вирішення цих задач часто використовуються методи апроксимації. Апроксимації необхідні і в багатьох випадках вирішені ті задачі, які можна вирішити наближеними методами.

Задачі гідродинаміки можна класифікувати по видах припущень. Спочатку робиться припущення відносно властивостей рідини: в’язка чи нев’язка, зжимаєма чи незжимаєма, присутній чи відсутній поверхневий натяг. Припущення рідини нев’язкою, незжимаємою та без поверхневого натягу спрощують рівняння. Далі використовуються інші апроксимації, так звані – математичні апроксимації. Їх значення знаходиться не в обмеженні природи рідини, а в обмеженні кількості хвиль та граничної конфігурації. Вид математичної апроксимації дає інший спосіб класифікації задач – апроксимація нескінченно малої хвилі та апроксимація мілкої води. [6]


2 Вплив форми профілю на вирішення основних гідродинамічних задач


Окрім припущень та умов до хвильової поверхні увага також звертається і на форму профілю, який рухається по поверхні. Так, найчастіше для спрощення задачі використовується плоска пластина. Більш загальний випадок глісування можна отримати, якщо пластину замінити дугою з невеликою випуклістю або опуклістю. Що стосується тривимірних задач, то тут розглядаються більш складні форми глісуючої поверхні – у вигляді тривимірних фігур – конусоподібні, шарові, призматичні та ін.

Робота [10] присвячена випадку круглої глісуючої поверхні. Крила з дійсно круглою формою глісуючої поверхні не є зогальною задачею в аеронавтиці або гідродинаміці. В роботі увага акцентується головним чином на аналітичних та числових результатах для тонких, непроникних поверхонь круглої форми.

Більше уваги приділяється дослідженням ефекту наявності випуклості на днищі судна. Тулін (1957) показав, що головні особливості нев’язкого потоку поблизу тонкої, плоскої поверхні при великій швидкості гарно апроксимуються теорією тонкого тіла для отримання кінцевих швидкостей по ватерлініям. Окрім того, він показав, що наявність килеподібної випуклості на пластині приводить до бризкового опору, а нев’язкий опір плоских, тонких глісуючих пластин складається з індуктивного опору та бризкового опору, які рівні між собою при відсутності випуклості. Тулін представив результати, які показали, що бризковий опір є функцією форми судна та продольної випуклості, кривизни та куту поширення. Його параметричні оцінки вказали, що тупі носові частини з кормою з великою кривизною випуклості дадуть найменш нев’язкий опір. Але неврахований Туліном опір тертя дав нереалістичне зображення відносного впливу бокових вертикальних форм на повний опір. [11]

Більш складна задача, пов’язана з дослідженням гідродинамічних параметрів глісуючого корпусу при наявності випуклості на днищі, розглянута в [12]. Корпус, в цій роботі, представляв собою призматичну поверхню.

Хоча робота Туліна ігнорується емпіриками та теоретиками, на її основі побудований метод Воруса для вивчення теорії для вертикального руху симетричних, двовимірних клинів з кривими та прямим сторонами. Головна відмінність роботи Воруса від роботи Туліна полягала у врахуванні точки наведеної поперечної нормалі швидкості на корпус і заміни сингулярної поведінки бризка складною процедурою розкладання. Ворус таким чином отримав інтегральне рівняння другого порядку. Модель Воруса ускладнена. [13]

Багато інших вчених займалися задачами глісування при наявності випуклості. Наприклад – Маріо (1951) проаналізував глісування в довільних числах Фруда. Камбербач (1958) також вивів формули для двовимірних пластин при великих, але кінцевих числах Фруда. Задача усталеного в’язкого опору, який встановлений при постійній довжині хорди була вирішена Ву (1972). В 1967 році Маріо вирішив дану задачу при врахуванні гравітаційності. Він також враховував бризковий опір, але знову оцінював тільки поверхневі шари. [12]


3 Комп’ютерні методи визначення гідродинамічних характеристик глісуючого комплексу


Передбачення створених хвилею рухів і хвильових навантажень – одне з найважливіших питань при конструюванні судна. Рухи з більшою амплітудою створюють задачу про безпечне пересування суден в воді, у той час екстремальне навантаження може привести до пошкодження структури. Загальне застосування методу малих збурень - один підхід до такої нелінійної задачі, де нелінійні ефекти обчислюються за допомогою збереження квадратних позначень у граничних умовах. Однак, в цьому підході залишаються лінійні припущення.

Загальні методи для передбачення характеристик глісуючго корпусу включають емпіричні рівняння і дослідне випробування. Емпіричні рівняння часто можна застосувати тільки до подібних типів корпуса в малому діапазоні параметрів, у той час як випробування моделі часто дуже дорого, особливо для малого судна.

Зараз зростають вимоги до розвитку методу розрахунку, який орієнтується, в принципі, на широкі можливості. Сучасний розвиток в комп’ютерних характеристиках і чисельних методах дозволили вирішити нелінійні задачі набагато легше, ніж раніше.

Об’єднаний метод Ейлер Лагранжа (МЕЛ) вперше був введений Лонгетом-Хігінсом і Скелетом (1976), для моделювання деформації поверхневих хвиль. Метод МЕЛ використовує підхід повністю нелінійної області часу і застосовується до різноманітних нелінійних задач. Метод моделювання для руху пливучого корпуса у хвилях був розроблений Вінжі і Бревігом (1981), Квінті та ін. (1990), Сеном (1993) і Танізава (1995). Двовимірні взаємодії пливучих тіл з вільною поверхнею можна обчислити раціонально, використовуючи повністю нелінійний підхід. З іншого боку, підхід нелінійної часової області був поширений на тривимірну задачу хвилі судна і вивчений багатьма дослідниками. В принципі, обчислені результати повністю нелінійного підходу були отримані Маскевом (1992), Беком та ін. (1994), Скорпіон та ін. (1996) і Шіракура та ін. (2000). Хоча їх формулювання теоретично точні, чисельно стійкі рішення не можна отримати в деяких випадках обчислення.

Для практичного використання потрібно більше досліджень і числових вимірювань. Числовий аналіз тривимірним методом - інший підхід до нелінійної задачі, який можна розглянути як метод малих збурень. Тобто, лінійна або слабо нелінійна умова вільної поверхні для невстановленої області хвилі представлені у більшості випадків, у той час як миттєва геометрія корпусу враховується в обчисленні в умові поверхні корпусу. Оскільки з цими припущеннями очікуються більш стійкі рішення, були представленні успішні результати обчислення рухів судна (наприклад, Лін і Юу 1990, Накос і ін. 1993, Буннік і Германс 1998, Колагросі і ін. 1999, Ясукава 2000 і Катаока і ін. 2001).

Теорія високошвидкісної смуги (ТВШС), вперше представлена Чапманом (1976), застосовувалась багатьма дослідниками, наприклад, Адачі і Охмасу (1980), Енг і Кім (1981), Охмасу і Фалтінсен (1990), Фалтінсен і Жао (l991). Цей метод часто називають "2.3 D " або "2D+T" теорія, у якій задача тривимірної вільної поверхні корабельної хвилі зведена до двовимірної задачі, яка може бути вирішена послідовно в часовій області. Адачі і Масуа (1996) запропонували метод функції Гріна в 2.5D теорії, де було враховано додаткове позначення, яке відповідає поперечним хвилям у задачі усталеного хвилеутворення. Кашігаві (1995) розробив розширену об’єднану теорію, у якій немає обмеження на порядок поступової швидкості чи частоти коливання. Хоча ці два методи, використовуючи двовимірний підхід - дуже практичні з раціональних, теоретичних і обчислювальних точок зору, обидва методи сумісні з лінійними припущеннями.

З’єднання вищезгаданих двох методів приводить до підходу нелінійної часової області, використовуючи ТВШС, яка є нелінійною версією 2.5D теорії. Взаємодія в низу за течією у тривимірному потоці навколо судна пояснюється ефектом запам’ятовування вільної поверхні. Оскільки задачі граничних умов (крайові задачі) можуть бути описані тим же самим формулюванням у випадках і усталеного і неусталеного потоку навколо судна, потенціали швидкості можна вважати однаковими. Крім того, граничні умови повністю нелінійні в структурі теорії тонкого судна, і в обчисленні можна врахувати геометричні, гідростатичні і гідродинамічні нелінійні характеристики. Калісал і Чан (1989) та Тулін і Ву (1996) розробили чисельні моделювання розбіжних головних хвиль. Фонтайн і Квінт (1997) також показали обчислення головних хвиль і запропонували можливість його застосування для прогнозування удару навантаження. Маруо і Сонг (1994) продемонстрували, що головні хвилі розбиваються при русі високошвидкісного судна, яке застосовувалося для аналізу змочення палуби. Обчислення гідродинамічної сили в задачі усталеного коливання були представлені Кіхара і Найто (1998). Крім того, вони досліджували прогнозування додаткового опору моделі Віглея в регулярних головних хвилях. З подальшим розвитком в цій області, були активно вивчені 2D+T методи разом з процедурою обчислювальної гідродинаміки (CFD). Тулін і Ландріні (2000) представили аналіз розбивання хвиль, використовуючи згладжену частину гідродинаміки (SPH), і Андрілон та Алесандріні (2002) показали результати обчислення, використовуючи обчислювальний пристрій Навье-Стокса з об’ємно-кінцевим (VOF) методом. Ці методи дозволяють моделювати гідродинамічні рухи, включаючи комплексні фази розсіяння хвиль, типу повторного сплеску, формування сплеску вверх і завихреності. Для практичного використання в технічних задач, застосування нових CFD процедур, описаних вище для обчислення гідродинамічної сили, є перспективною задачею. [14]

В роботі [15] представлено результати вивчення використання CFD для оцінки характеристик високошвидкісного глісуючого судна, яке рухається зі сталою швидкість по спокійній воді. Для вивчення використовується неструктурований, багатофазний, кінцевий об’ємний код, який використовує метод об’єму рідини (VOF). Характеристика високошвидкісного судна глибоко пов’язана з орієнтацією корпуса у швидкості, що не може бути відома апріорно. Змінюється підйом глісуючих корпусів і кути атаки, як реакція на область тиску, створену потоком. Для врахування цих змін у положенні корпуса метод моделювання повинен гарантувати, що в підйомі була досягнута динамічна рівновага в момент обробки. Це досягнуто за допомогою ітераційної схеми, у якій область потоку була вирішена для дискретних орієнтацій корпуса. Робота складається з набору експериментальних випробувань моделі, для отримання даних, з якими чисельні результати порівнюються. Для цього було виконано три набори моделювань. Перший набір виконувався для прямого порівняння числових результатів з експериментальними. Другий набір моделювань виконаний для задоволеної умови рівноваги. Третій набір – відповідає стану рівноваги при підйомі та обробці. [15]


4 Основні гідродинамічні характеристики


4.1 Додатковий опір


Як зазначено вище, для конструювання суден необхідно вивчення гідродинамічних характеристик та передбачення поведінки судна в умовах природного хвилювання. Одним з параметрів, які необхідно обов’язково враховувати при конструюванні судна – є додатковий опір хвилі. В [14] увага зосереджується на впливі надводної форми носу на додатковий опорі. В роботі до задачі неусталеного хвилеутворення застосовується нелінійний 2D+T метод, в якому потік описується, використовуючи суперпозицію набігаючої хвилі з іншим збуреннями, які викликані корпусом. Не зважаючи на те, що включені процедури апроксимації, цей метод є практичним для дослідження нелінійних характеристик гідродинамічної сили. Для збільшення енерго-економічних суден, потрібно більше зменшення опору хвиль. Частково, це через те, що відношення додаткового опору хвиль до загального опору

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: