Xreferat.com » Рефераты по физике » Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи

Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи

Харківський обласний науково – методичний інститут безперевної освіти

Факультет підвищення кваліфікації

Кафедра методики природничо – математичної освіти


Підсумкова робота

Особливості методики розвязування фізичних задач у 7 – 8 класах 12 – річної школи


Виконав слухач курсів підвищення

кваліфікації вчителів фізики (термін

навчання)

Рожок Олена Павлівна

(термін навчання 3.11 – 28.11.08 р

вчитель фізики

Дмитрівської ЗОШ І – Ш ступенів,

Первомайського району

Термін проходження курсів:

3.11 – 7.11.08 р

24.11. - 28.11.08 р

Рецензент Каплун С. В., канд. пед. наук,

доцент, завідувач кафедри методики

природничо – математичної освіти

ХОНМІБО

Харків - 2008-11-23

Зміст підсумкової роботи


Вступ:

а) аналіз нової програми;

б) проблеми;

в) особливості методики розв’язування задач.

2. Основна частина (розв’язування задач):

а) на побудову зображень, що дає тонка лінза;

б) використання алгоритмів;

в) розв’язування навчальних фізичних парадоксів;

г) розв’язування експериментальних задач

3. Висновки.

4. Список використаних джерел.

У 2008 – 2009 навчальному році продовжено перехід загальноосвітніх навчальних закладів до нової структури фізичної освіти, яка передбачає вивчення в 7-9 класах освітної школи завершеного курсу фізики першого концентру, що включеє всі елементи базових знань про явища природи, розкриває суть фундаментальних наукових факторів, гіпотез, понять і законів фізики.

Відповідно до Типових навчальних планів загальноосвітніх навчальних закладів 12 – річної школи, затверджених наказом МОН України від 07.-5.2007 № 357, у 7 класі на вивчення фізики відводиться 35 годин (1 година на тиждень ), а у 8 класі 70 годин ( 2 години на тиждень)

Враховуючи вікові особливості учнів базової школи, не достатньо розвинену здатність до абстрактного та логічного мислення, вивчення всіх фізичних явищ здійснюється на емпіричному рівні: від спостереження явища до висунення гіпотез пояснення з подальшою експериментальною перевіркою, а тільки потім теоретичне узагальнення.

За тематичним розподілом відповідно до чинної навчальної програми для 12 – річної школи у 8 класі продовжується ознайомлення учнів з фізичними явищами, основна увага приділяється розгляду механічних і теплових явищ.

У новій навчальній програмі акцентовано увагу на формуванні практичних навичок школярів. У 7 класі запропоновано 12 лабораторних робіт, а у 8 – 14.

Річний досвід апробації нової навчальної програми показав ряд труднощів, які виникають при викладанні фізики в 7 класі. Зокрема, ознайомлення учнів з основними фотометричними величинами - сила світла і освітленність – слід проводити на якісному описовому рівні, не вимагаючи від учнів запису фізичних формул для визначення цих величин.

Поняття сили світла необхідно вводити як фізичну величину, що характеризує здатність джерела світла випромінювати світлову енергію. Під час наведення прикладів значень сили світла природних та штучних джерел світла слід ввести одиницю сили світла в СІ

Оскільки обережно пропорційна залежність учнями 7 класу до цього часу в курсі математики ще не вивчалася, можна не розглядати формулу І освітленності Е = --- 2 , а пояснювати на якісному рівні існування R залежності освітленності від сили світла джерела та відстані від нього, від кута падіння променів за допомогою відповідних демонстраційних та фронтальних дослідів і спостережень .

Лише за наявності відповідної математичної підготовки слід вимагати від учнів запис та формулювання законв заломлення світла.

У новій програмі з фізики для 12 – річної школи багато уваги приділено розв’язуванню фізичних задач. Так, підкреслено , що задачі потрібно ефективно використовувати на всіх етапах засвоєння фізичного знання : для розвитку інтересу, творчіх здібностей і мотивації учнів до навчання фізики, під час постановки проблеми, що потребує розвязання, у процесі формування нових знань, вироблення практичних умінь учнів, з иетою повторення, закріплння, систематизації та узагальнення засвоєнного матеріалу, з метою контролю якості засвоєння навчальних досягнень учнів.

Класифікація фізичних задач

За змістом: За способом подання умови:

- конкретні, - текстові,

- абстрактні, - графічні,

- з міжпредметним змістом, - експериментальні,

- технічні, - задачі - малюнки (або

- історичні, фотографії),

- з певних розділів курсу фізики За ступенем складності:

За дидактичною метою: - прості,

- тренувальні - середньої складності,

- творчі - складні,

- дослідницькі, - підвищеної складності.

- контрольні.

За вимогою: За способом розв’язування :

- на знаходження невідомого, - обчислювальні,

- на доведення - графічні,

- на користування - якісні.

Розуміння задачі визначається не тільки розкриттям її змісту, а й структурою. Діяльність учнів в процесі розв’язування фізичних задач, як правило, складається з трьох етапів:

1. аналіз фізичної проблеми або опис фізичної ситуації;

2. пошук математичної моделі розв’язку;

3. реалізація розв’язку та аналіз одержаних результатів

Розглядаючи кожен з етапів більш детально, визначають, що на першому відбувається побудова фізичної моделі задачі, яка подана в її умові:

аналіз умови задачі, визначення відомих параметрів і величин та пошук невідомого;

конкретизація фізичної моделі задачі за допомогою графічних форм (малюнки, схеми, графіки тощо)

скорочений запис умови задачі, що відтворює фізичну модель у систематизованому вигляді.

На другому, математичному етапі розв’язування фізичних задач відбувається пошук зв’язків і співвідношень між відомими величинами і невідомими:

вибудовується математична модель фізичної задачі, робиться запис загальних рівнянь, що відповідають фізичній моделі задачі;

враховуються конкретні умови фізичної ситуації, що описується в задачі, здійснюється пошук додаткових параметрів (початкові умови, фізичні константи),

приведення загальних рівнянь до конкретних умов, що відтворюються в умовах задачі, запис співвідношення між відомим і невідомими величинами у формі часткового рівняння

На третьому етапі учні мають здійснювати такі дії:

аналітичне, графічне або чисельне розв’язування рівняння відносно невідомого;

аналіз одержаного результату щодо його вірогідності і реальності, запис відповіді;

узагальнення способів діяльності, які властиві даному типу фізичних задач, пошук інших шляхів розв’язування.

Засвоєння наукових знань та їх застосування відбувається на відповідних рівнях, а саме :

Фактичному (початковому), операційному (середньому), аналітико – синтетичному (достатньому) та творчому ( високому)

Навчальні заняття – це певним чином побудована система елементів наукових знань. Їх засвоєння має відбуватися також на зазначених рівнях. Задачі, запропоновані нижче, відповідають переважно третьому (достатньому) та четвертому (високому ) рівням навчання досягнень учнів, їх певній компетентності в галузі фізики.

Своєрідна особливість запропонованих завдань (задач) полягає в тому, що для їх розв’язування наявність необхідних елементів знань є обов’язковою але не достатньою умовою. Запорукою успішного розв’язування є вміння створювати конкретні системи знань відповідно до фізичної ситуації, яку необхідно зрозуміти з тексту задачі. У деяких текстах задач є «прихована» підказка, без «відкриття» якої задача не може бути успішно розв’язаною. Щоб зробити таке «відкриття», треба цілеспрямовано міркувати, здогадуватися. Постає питання: чи можна навчитися здогадуватися? І так, і ні!

Ні, адже у деяких задачах є певна не стереотипність, тобто такі ситуації, які у явному вигляді в навчальній практиці не зустрічалися. Так, якщо є значний досвід самостійного розв’язування нестереотипних задач, у результаті якого формується певна своєрідна якість розуму, певний стиль мислення, що й обумовлює значне зростання імовірності успіху.

Задача № 1 Автомобіль проїхав три однакові частини шляху зі швидкостями 40кмгод, 50 кмгод, 80 кмгод. У зворотному напрямку він половину всієї відстані їхав зі швидкістю 40 кмгод, другу половину – зі швидкістю 60 кмгод. Визначте середні швидкості в прямому напрямку, в зворотному і за весь час руху. Порівняти проміжки часу руху в прямому і зворотному напрямках

Розв’язування

S1 = S2 =S3 =S За визначенням V = St S шлях t час руху тіла

1 V = 3SS +S+S = 3V V V

V+V+V V V + V V + V V

V = 40 кмгод V =3 40 50 80 =52,2 км год


V = 50 кмгод 50 80 +40 80+40 50

V = 80 кмгод 2.V =35 20 V =20 V

2) V = 40 кмгод 1.55V +1.55V V+V

V = 60

S= S = 1.55 V = 2 40 60 = 48 км год

V -? 40+60

V-?

V-?

V =2V V = 50

V+V

tt = 3S 3S V

=1.09

V V V


Відповідь: 52.2 кмгод ; 48 кмгод ; 50 кмгод; 1,09

Розв’язування задач на побудову зображення, що дає тонка лінза, та застосування формули тонкої лінзи


Метою такого уроку є:

навчити учнів співвідносити формулу відстань лінзи з відстанню від предмета до лінзи і від зображення до лінзи , формувати навички будови ходу променів у лінзах, побудови положення оптичного центру та фокусів лінзи.

Мотивація навчальної діяльності

Чи обов’язково для того, щоб знайти розміщення зображення в лінзі, треба виконувати побудову? Чи не можна знайти місце його розміщення алгебраїчним способом?

Дослід: розміщуємо на одній лінії столу електричну лампочку або свічку, лінзу (з відомою фокусною відстанню) і екран. Пересуваючи лінзу між джерелом світла і екраном, отримуємо чітке зображення на екрані. Вимірюємо відстань від середини лінзи до екрану, позначивши її f , і від середини лінзи до джерела світла, позначивши її а. А тепер пропонуємо учням, щоб перший ряд порахував відношення 1 а, другий ряд – 1 а, а третій 1 F/.

Додавши два перших відношення, дістанемо третє. Отже маємо залежність:

1 1 1

__ = __ + __ формула тонкої лінзи

F а f

Користуючись формулою тонкої лінзи під час розв’язування задач, треба мати на увазі: відстань від зображення до лінзи слід брати зі знаком мінус, якщо зображення уявне, і зі знаком плюс, якщо зображення є дійсним; фокусну відстань збиральної лінзи беремо зі знаком « +», а розсіювальної – зі знаком «- «

Розв’язування об’єктивних зв’язків


Розв’язування вправ та задач

1. Предмет розташований на відстані 15 см від розсіювальної лінзи, з фокусною відстанню 30 см. На якій відстані від лінзи виникає зображення цього предмета? (0,1м)

2. На якій відстані від збиральної лінзи з фокусною відстанню 20 см виникає зображення предмета, якщо сам предмет розташований на відстані 15 см? (0,6 м)

3. На малюнку показано головну оптичну вісь тонкої лінзи, світну точку А та її зображення В. Здійсніть побудовою положення оптичного центру лінзи та її фокусів. Визначте тип лінзи (збиральна чи розсіювальна) і тип зображення (дійсне чи уявне)

А

Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школиМ N

B

4. На малюнку показано головну оптичну вісь лінзи і хід одного з променів. Здійсніть побудовою положення фокусів лінзи

Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школиОсобливості методики розв’язування фізичних задач у 7–8 класах 12–річної школиОсобливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи

М

Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи


5. На малюнку показано хід променя 1 крізь збиральну лінзу. Побудуйте подальший хід променя 2

Використання алгоритмів не є чимось іншим новим і про їх застосування багато відомо, але цей процес має фрагментальний характер. Так, часто можна зустріти загальний алгоритм розв’язування задач з фізики: прочитати умови задачі, з’ясувати, про яке явище йдеться, записати вихідну формулу, що виражає закономірність перебігу цього явища, вивести кінцеву формулу, підставити числові значення, виконати перевірку на розмірність, записати відповідь або конкретний алгоритм, що вказує, як розв’язувати задачу з тієї чи іншої теми курсу фізики.

Така громісткість алгоритмів та широкий діапазон їх застосування затрюднює їх використання учнями середньої школи. Тому, на думку більшості вчителів, можна вважати, що ефективне застосування алгоритмічного підходу до розв’язування задач пов’язане з тим, що алгоритми треба застосовувати системно (див схему), враховуючи їх властивості: визначеність, масовість та результативність дії.

Елементарний Тематичний Методологічний

Конкретний

Спочатку (7 клас) пропонуємо елементарний алгоритм

Наприклад, для такої задачі:»Яку площу основи має діжка заввишки 1 м, містить 160 кг бензину? Густина бензину 800кг м « ми пропонуємо:

прочитати умови задачі,

з’ясувати явище, про яке йдеться

записати вихідну формулу, що описує це явище,

вивести кінцеву формулу;

підставити числові значення і виконати математичні розрахунки

Записати відповідь

При подальшому вивченні фізики деякі положення цього алгоритму розширюються, конкретизуються. Наприклад, у другому пункті можна додати – « зробити малюнок, зазначивши сили, що діють на тіло», у п’ятому пункті – « перевірити відповідь за розмірністю «. Такий алгоритм легко заповнювати і застосовувати семикласникам, бо має невелику кількість кроків.

Процес розв’язування задачі з фізики пов'язаний з пошуком відповідних закономірностей (законів), що лежать в основі явищ, про які йдеться в задачі, тому наступним етапом перетворення алгоритму є його трансформація в тематичний . Тематичний тип передбачає конкретні дїї. Перетворення елементарного алгоритму у тематичний з

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: