Xreferat.com » Рефераты по физике » Анализ цепи во временной области различными методами

Анализ цепи во временной области различными методами

Содержание

1. Введение

2. Постановка

3. Анализ цепи во временной области методом переменных состояния при постоянных воздействиях

3.1 Составление уравнений состояния цепи.

3.2 Определение точных решений уравнений. Решение уравнений состояния численным методом

4. Анализ цепи операторным методом при апериодическом воздействии.

4.1 Определение функции передачи, её нулей и полюсов

4.2 Определение переходной и импульсной функции

4.3 Определение напряжения через нагрузку

5. Анализ цепи частотным методом при апериодическом воздействии.

5.1 Определение амплитудно-фазовой (АФХ), амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик функции передачи

5.2 Определение амплитудного и фазового спектра входного сигнала

5.3 Определение амплитудного и фазового спектра выходного сигнала

5.4 Определение выходного сигнала по вещественной характеристике при помощи приближенного метода Гиллемина

6. Анализ цепи частотным методом при периодическом воздействии

6.1 Разложение в ряд Фурье периодической функции и определение её амплитудного и фазового спектров

6.2 Определение напряжения через нагрузку

7. Заключение.

8. Список используемой литературы.


Введение

Практическое применение расчета электрических цепей очень важно. В курсовой работе требуется провести анализ линейной разветвленной электрической цепи различными методами.

Целью курсовой работы является овладение некоторыми современными методами анализа линейной электрической цепи при различных воздействиях в переходном и установившемся режимах с применением вычислительной техники.

В курсовой работе использован следующий материал курса теоретических основ электротехники: методы расчёта сложных цепей, анализ цепей во временной области, операторный метод анализа цепей, частотный метод анализа цепей.

При выполнении курсовой работы применялась программа MathCAD Profession, что позволило значительно упростить вычисления и расчёты в ряде случаев.


2. Постановка задачи

 На рисунке 1 представлена анализируемая цепь. Параметры элементов цепи следующие: , , , , , , , . Здесь  - единичная ступенчатая функция (функция включения). Параметры одиночного и последовательности импульсов: , , . График одиночного импульса приведён на рисунке 1.1.

 


Рисунок 1. Схема анализируемой цепи.

Рисунок 1.1. Входной импульс.


3. Анализ цепи во временной области методом переменных состояния при постоянных воздействиях

3.1 Составление уравнений состояния цепи

Уравнения электромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи.

Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники. Количество переменных состояния, следовательно, число уравнений состояния равно числу независимых накопителей энергии.

В данной задаче переменными состояния являются напряжения на ёмкостях и ток в индуктивности: и . При этом переменные состояния образуют систему из наименьшего числа переменных, полностью определяющих реакции всех ветвей цепи при заданных начальных условиях и приложенных при внешних воздействиях.

Требуемая система уравнений может быть получена из системы уравнений, составленной по законам Кирхгофа. При этом целесообразно записывать напряжения и токи на емкости и индуктивности через переменные состояния.


Выберем направления токов (рисунок 2).

 


Рисунок 2. Выбор направлений токов в ветвях и контуров.

Составим уравнения по законам Кирхгофа:

 

Исключив из уравнений токи и напряжения, не связанные с переменными состояния, получим систему уравнений по методу переменных состояния, разрешенную относительно первых производных (форма Коши):

 (1)

В матричной форме записи эта система имеет вид:

, (2)

где  матрица коэффициентов при переменных состояния, называемая матрицей Якоби;  - вектор - столбец переменных состояния;  - матрица коэффициентов источников тока и э.д.с.;  - вектор - столбец параметров источников.

В нашем случае это:

 

 

3.2 Определение точных решений уравнений состояния

Решение системы (1) определяется выражением:

Так как в цепи действуют источники постоянной ЭДС Е и постоянного  тока J, то решение может быть представлено в более простом виде:

 , (3)

Здесь  - матричная экспоненциальная функция;  - вектор-столбец начальных значений переменных состояния;  - единичная матрица.

Начальные значения переменных состояния могут быть определены из анализа схемы до коммутации. Предполагается, что в схеме до коммутации существовал установившийся режим постоянного тока, что позволяет представить схему в виде:

 


Рисунок 2.1. Схема определения независимых начальных условий.

Анализ схемы рис. 2.1 позволяет определить независимые начальные условия:

 (4)

Для определения матричной экспоненциальной функции  используем разложение в ряд Тейлора:

 , (5)

Число членов разложения должно быть равно числу переменных состояния.  и  являются некоторыми функциями времени, которые в свою очередь находятся из системы:

 (6)

Найдя собственные значения матрицы  :

подставляем их в (6) и находим  и :

3.3 Решение уравнений состояния численным методом

Решение системы уравнений (1) может быть найдено с помощью какого-либо численного метода интегрирования дифференциальных уравнений. В этих методах интересующий промежуток разбивается на равные малые интервалы h. Приближённые дискретные значения переменных состояния определяются последовательно, на каждом шаге, начиная от времени t = 0.

Решение системы (1) с использованием явного метода Эйлера (или алгоритма Рунге-Кутта первого порядка) имеет вид:

 Начальным значениям переменных состояния соответствует k = 0. Оценить временной интервал Dtрасч расчета можно на основе известных собственных значений матрицы  как Dtрасч = 4/ |lmin|. Здесь  |lmin| - минимальное собственное значение, если собственные значения являются вещественными, отрицательными и различными, или вещественная часть комплексного собственного значения, если собственные значения являются комплексно сопряженными. Тогда шаг расчета может быть найден исходя из выражения: h = Dtрасч/N. N - число шагов, на которые разбит интервал Dtрасч. Положим N=80, тогда h = 2,25*10-6. Погрешность расчёта пропорциональна h2 .

Таблица значений переменных состояния на каждом шаге.

Таблица 1.

Uc4 , B                Il3 , A

 

            U, B                                   I, A

 

            U, B                                   I, A

 
 U,B I, A

 

                                                                                                                

 

 

 

  - аналитическое решение

 - численное решение

Рисунок 2.2 Изменение напряжения на конденсаторе С4


 - аналитическое решение

  - численное решение

Рисунок 2.3 Изменение тока в катушке индуктивности L3

 

 


4. Анализ цепи операторным методом при

апериодическом воздействии

4.1 Определение функции передачи, её нулей и полюсов

Анализу подлежит схема представленная на рис. 3. Начальные условия в цепи нулевые, в момент t = 0 на вход цепи источником напряжения подан импульс (рисунок 1) с амплитудой 10 В и длительностью 60 мкс., j(t) = 0.

 


 

Рисунок 3.Операторная схема замещения.

Составим уравнения в операторной форме по законам Кирхгофа, найдём отношение . Это отношение является функцией передачи .


Таким образом, функция передачи будет иметь вид:

 (7)

Полюсы функции передачи могут быть найдены путём нахождения корней полинома второй степени, находящегося в знаменателе самой функции:

Таким образом:

Совпадение полюсов функции передачи  и  с собственными значениями матрицы  -  и  даёт дополнительную информацию о правильности нахождения передаточной функции.

Аналогично из числителя функции передачи находятся нули функции:

Наиболее наглядным способом охарактеризовать передаточную функцию является графическое расположение ее полюсов и нулей на комплексной плоскости, называемой диаграммой полюсов-нулей (рис.3.1).

 

Рисунок 3.1. Диаграмма полюсов-нулей.

Так как полюсы передаточной функции лежат в левой полуплоскости, в линейной пассивной цепи имеются резистивные элементы, в результате чего будет происходить затухание свободной составляющей напряжения. Передаточные функции, полюса которых не лежат в правой полуплоскости комплексной плоскости, называются устойчивыми.

 Нули передаточной функции при учете потерь могут располагаться в любой части комплексной плоскости.

4.2 Определение переходной и импульсной характеристик

Переходная характеристика цепи представляет собой реакцию цепи на воздействие единичной ступенчатой функции (функции Хэвисайда 1(t)) и может быть найдена как обратное преобразование Лапласа от , либо с помощью формулы разложения:

, (8) где  и  числитель и знаменатель передаточной функции  соответственно, а  - корни выражения :


Таким образом, подставляя корни  и, применяя преобразование Эйлера, получим:

 

Импульсная характеристика цепи  представляет собой реакцию цепи на воздействие единичной импульсной функции  и может быть найдена как обратное преобразование Лапласа от передаточной функции, либо с помощью формулы разложения:

, (9) где  и  числитель и знаменатель передаточной функции  соответственно, а  - полюсы :

Таким образом:

 


Первое слагаемое определяется действием на входе цепи d - импульса тока и существует только для t=0. В дальнейшем переходной процесс протекает за счет энергии, накопленной в электрическом поле конденсатора и магнитном поле индуктивности в результате действия d - импульса тока. Из приведенного выражения видно, что, как и в первом случае, переходной процесс носит затухающий колебательный характер с частотой, равной собственной частоте рассматриваемой цепи: wсв =  41574 рад/сек. Подобного вида решения (с d -функцией) возникают всякий раз, когда степени полиномов числителя и знаменателя передаточной функции оказываются равными. Коэффициент при  соответствует части входного импульса поступающей в нагрузку.

 


 

Рисунок 3.2. Импульсная и передаточная характеристики

4.3 Определение напряжения на нагрузке

Входной импульс в данном задании представляет собой знакопеременное прямоугольное напряжение. Его можно представить как сумму следующих функций:

Применяя теорему Запаздывания, найдём операторное изображение для одиночного импульса напряжения:

 (10)

Так как , выразим :

 (11)

Подставив в (11) выражения (10) и (7), получим:

Для того чтобы найти оригинал этой функции, воспользуемся таблицами для преобразований Лапласа:

 

 

Рисунок 3.3 Графики входного и Рисунок 3.4 График выходного

 выходного сигналов сигнала


5. Анализ цепи частотным методом при апериодическом воздействии

5.1 Определение амплитудно-фазовой (АФХ), амплитудно-частотной (АЧХ)и фазо-частотной (ФЧХ) характеристик функции передачи

Амплитудно-частотная характеристика – это зависимость от частоты модуля входной, выходной или передаточной функции цепи, выраженных в комплексной форме (ГОСТ 19880-74). Амплитудно-частотная характеристика (АЧХ) является одной из самых важных характеристик любой цепи и позволяет исследовать искажения вносимые цепью в спектр входного сигнала. Наличие частотно - зависимых элементов (L и C) в исследуемой цепи приводит к неравномерному изменению составляющих спектра входного сигнала. Наиболее простой способ получения АЧХ цепи -

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: