Xreferat.com » Рефераты по физике » Квантово-механічна теорія будови речовини

Квантово-механічна теорія будови речовини

він зіткнеться з фотоном, що має певну масу, то він відскочить і його швидкість зміниться. Тому, ведучи спостереження через послідовно малі проміжки часу можна помітити, що електрон рухається зигзагоподібно під впливом послідовних зіткнень з фотоном.

Якщо енергію фотонів (hn) знизити, то можна зменшити вплив зіткнень. Однак, це приведе до збільшення довжини хвилі Квантово-механічна теорія будови речовини світла і тому електрон буде визначатися менш точно, внаслідок зниження роздільної здатності мікроскопа. Таким чином, при використанні світла низької частоти можна точно знати швидкість електрона, але не його положення.

З іншого боку, світло з короткою довжиною хвилі складається з фотонів високої енергії (hn) і хоча диференційні помилки в мікроскопі будуть невеликими, але на швидкість мікрона буде сильно впливати кожне зіткнення з фотоном. Таким чином при використанні такого випромінювання можна знати положення електрона, але не його швидкість. Гейзенберг показав, що добуток невизначеностей положення і швидкості не може бути меншим від Квантово-механічна теорія будови речовини, тобто Dt · Dv і Квантово-механічна теорія будови речовини. Отже, Гейзенберг вважав, що в атомних масштабах траєкторію частки уже не можна розглядати з математичною точністю, а замість цього повинна існувати смуга невизначеності, в якій частка може рухатися по всій області можливих положень. Цей рух має характерні риси хвильового руху і тому його можна трактувати на основі рівнянь хвильової теорії; цей предмет відомий як хвильова механіка.

З попереднього випливає, що можна розглядати тільки імовірність того, що частка буде в даному місці в даний момент і можна сформулювати принцип невизначеності: в принципі неможливо точно визначити і положення, і швидкість частки атомного масштабу.

В ролі моделі стану електрона в атомі в квантовій механіці прийнято уявлення про електронну хмару, густина відповідних ділянок якої пропорційна імовірності знаходження там електрона. Простір навколо ядра, в якому перебування електрона найбільш імовірне, називається орбіталю.

Розподіл електронної густини навколо ядра можна за допомогою кривих радіального розподілу (мал. ).


Квантово-механічна теорія будови речовини

Мал. Радіальний розподіл імовірності знаходження електрона в атомі для 1s орбіталі атома водню


Ця крива показує імовірність того, що електрон знаходиться в тонкому концентричному кулеподібному шарі радіусом r, товщиною dr навколо ядра. Об’єм цього шару рівний dV = 4pr2dr.

У 1926 р. Е. Шредінгер запропонував рівняння, що одержало назву хвильового рівняння Шредінгера. Воно зв’язує хвильову функцію y з потенціальною енергією електрона (u) і його повною енергією Е:


Квантово-механічна теорія будови речовини


де m – маса електрона; h – стала Планка; Е – загальна енергія електрона; u – потенціальна енергія електрона. Треба зазначити, що допустимі розв’язки рівняння Шредінгера можливі тільки для певних дискретних значень енергії електрона.

Кожній функції y1, y2, y3, ..., yn, яка є розв’язком хвильового рівняння відповідає певне значення енергії Е1, Е2, Е3, ..., Еn. Стан електрона в атомі характеризується значенням чотирьох квантових чисел: n – головного; l – орбітального; me – магнітного; s – спінового.

Квантування енергії, хвильовий характер руху мікрочасток, принцип невизначеності показують, що класична механіка непридатна для опису поведінки мікрочасток. Так, стан електрона в атомі не можна уявити як рух матеріальної частки по якій-небудь траєкторії. Квантова механіка замінює класичне поняття точного знаходження електрона в даній точці поняттям статистичної імовірності знаходження електрона в елементі об’єму dV навколо ядра.

Оскільки рух електрона має хвильовий характер, квантова механіка описує його рух в атомі так званою хвильовою функцією y. В різних точках атомного простору ця функція приймає різні значення. Математично це записується рівнянням y = y(х, у, z), де х, у і z координати точки. Певний фізичний зміст має y2, який характеризує імовірність знаходження електрона в даній точці атомного простору. Величина y2dV представляє собою імовірність виявлення мікрочастки в елементі об’єма dV.

Головне квантове число (n) визначає радіус квантового рівня (середню віддаль від ядра до ділянки з максимальною електронною густиною) і загальну енергію електрона на певному рівні. Воно може мати додатні цілі числа: n = 1,2,3,..,Ґ. Якщо n = 1, то електрон має найменшу енергію, а стан атома з найменшою енергією називається нормальним або основним. Із збільшенням значення n загальна енергія електрона збільшується, а стан атома при цьому називається збудженим. Тому стан електрона, який характеризується певним значенням головного квантового числа, називається енергетичним рівнем електрона в атомі. Для енергетичих рівнів електрона в атомі, що відповідають значенням n, прийняте позначення великими латинськими буквами:


n 1 2 3 4 5 6 7

енергетичні рівні K L M N O P Q.

Максимальна кількість енергетичних рівнів, яку може мати атом в основному стані, відповідає номеру періода, в якому розміщений певний хімічний елемент. Головне квантове число визначає і розміри електронної хмари: зменшення зв’язку енергії електрона з ядром відповідає збільшенню об’єму хмари і навпаки.

Основні енергетичні рівні складаються з певного числа енергетичних підрівнів, які проявляються в тонкій структурі атомних спектрів. Для характеристики енергії електрона на підрівні, або форми електронних орбіталей, введено орбітальне квантове число l, яке називається також азімутальним квантовим числом. Воно відповідає значенню орбітального моменту кількості руху електрона і обчислюється за формулою:


М = Квантово-механічна теорія будови речовини


Орбітальне квантове число (l) може мати значення від 0 до n – 1. Кожному значенню l відповідає певний підрівень. Енергетичні підрівні позначаються цифрами і маленькими латинськими буквами:


l 0 1 2 3

енергетичні рівні s p d f.


Можлива кількість підрівнів для кожного енергетичного рівня дорівнює номеру цього рівня, тобто величині головного квантового числа. Так, якщо n = 1, то існує лише один підрівень з орбітальним квантовим числом l = 0. На другому енергетичному рівні (n = 2) можуть бути два підрівні, яким відповідають орюітальні квантові числа l = 0; 1.

Відповідно до буквенних позначень енергетичних підрівнів електрони, які перебувають на них називаються s-, p-, d-, f-електронами.

Відповідно до квантовомеханічних розрахунків s-орбіталі мають форму кулі (сферична симетрія); р-орбіталі – форму гантелі; d- і f-орбіталі більш складної форми. Під ”формою орбіталі” треба розуміти таку просторову геометричну модель, в межах якої перебування електрона найімовірніше.

Стан електрона в атомі, що відповідає певним значенням n і l, записують так: спочатку цифрою позначають головне квантове число, а потім буквою – орбітальне квантове число:


3s (n = 3; l = 0); 4p (n =4; l = 1)


У магнітному полі спектральні лінії атомів стають ширшими, або розщеплюються, тобто з’являються нові близько розташовані лінії (збільшується мультиплетність). Це пояснюється тим, що електрон в атомі на всіх, крім s-підрівня, поводить себе подібно до магніту і тому характеризується, крім орбітального, ще і магнітним моментом. Просторове розміщення електронних орбіталей відносно напрямленості магнітного поля характеризується третім квантовим числом me, яке називається магнітним. Магнітне поле орієнтує площину орбіталі в просторі під певними кутами, при яких проекція орбітального моменту Мх на напрямленість поля (наприклад, на вісь х) визначається за формулою


Мх = Квантово-механічна теорія будови речовиниml


Магнітне квантове число може мати цілочислові значення від +l до –l.

Для s-електронів можливе лише одне значення ml і для р-електронів (l = 1) ml = –1; 0; +1; для d-електронів (l = 2) ml = –2; –1; 0; +1; +2; для f-електронів (l = 3) ml = –3; –2; –1; 0; +1; +2; +3. Певному значенню l відповідає (2l + 1) можливих значень магнітного квантового числа. Орбіталі з одинаковою енергією називають виродженими. Тому р-стан вироджений три рази; d-стан – п’ять; f-стан – сім разів.

Слід зазначити, що кожну орбіталь зображають також як енергетичну (квантову) комірку у вигляді квадратика □. Для s-електронів є лише одна орбіталь, або одна енергетична комірка; для р-електронів – три □□□ , для d-електронів – п’ять □□□□□ , для f-електронів – сім □□□□□□□ .

Стан електронів в атомі, крім обертання навколо ядра, яке визначається квантовими числами n, l, me, залежить також від їхнього власного власного руху – спіну: навколо власної осі цей рух електрона характеризується спіновим квантовим числом s, яке може мати тільки два значення +Квантово-механічна теорія будови речовини або –Квантово-механічна теорія будови речовини. Спін зображають протилежно напрямленими стрілками:



; ; ↑↓

Спіни електронів, напрямлені в один бік, називаються паралельними, а в протилежні – антипаралельними

Принцип Паулі. На основі аналізу атомних спектрів і врахування положення елемента в періодичній системі в 1925 р. В. Паулі сформулював принцип, який дає змогу визначити такі комбінації квантових чисел, які відповідають реальному розподілу електронів в атомі. Згідно принципу Паулі, в атомі не може бути двох електронів з одинаковими значеннями всіх чотирьох квантових чисел. Наприклад, якщо два електрони, які мають одинакові значення трьох квантових чисел n, l і me, відрізняються значенням четвертого квантового числа s. Суть принципу полягає в тому, що одну орбіталь, яка характеризується певними значеннями n, l і me, можуть займати не більше як два електрони з антипаралельними спінами. Число можливих енергетичних станів електронів на певному рівні визначається квадратом головного квантового числа – n2, а максимальне число електронів на ньому дорівнює 2n2.

Розподіл електронів на енергетичних рівнях і підрівнях записується так: великою арабською цифрою позначається номер енергетичного рівня, маленькими латинськими буквами – підрівні, а число електронів на підрівні – маленькою арабською цифрою справа зверху у вигляді індекса. Наприклад: 3s23p6d10 – розподіл електронів на третьому енергетичному рівні.

Послідовність заповнення електронами енергетичних рівнів в атомах. Послідовність заповнення атомних електронних орбіталей залежно від головного і орбітального квантових чисел дослідов В. М. Клечковський, який встановив, що енергія електрона зростає із збільшенням суми цих двох квантових чисел, тобто (n + l). Відповідно до цього він сформулював правило: при збільшенні заряду ядра атома послідовне заповнення орбіталей відбувається від орбіталей з меншим значенням суми головного і орбітального квантових чисел (n + l) до орбіталей з більшим значенням цієї суми.

При одинакових значеннях суми (n + l) заповнення електронами орбіталей відбувається послідовно у напрямі зростання значення головного квантового числа.

Заповнення електронами всіх енергетичних рівнів і підрівнів залежно від їх енергії відбувається в такій послідовності:


1s – 2s – 2p – 3s – 3p – 4s – 3d – 4p – 5s – 4d – 5p – 6s – 5d – 4f – 6p – 7s – 6d – 5f – 7p


Заповнення електронами еквівалентних орбіталей відбувається згідно правила Гунда: сумарне спінове число електронів певного підрівня має бути максимальним. Елементи, в атомах яких заповнюються s-орбіталі, називаються s-елементами; р-орбіталі – називаються р-елементами; d-орбіталі – d-елементами; f-орбіталі – f-елементами.

На основі теорії будови атомів було встановлено причину періодичної зміни властивостей елементів. Властивості елементів змінюються періодично завдяки тому, що періодично повторюється заповнення електронами зовнішніх енергетичних рівнів. Наприклад: лужні метали містять на зовнішньому рівні один електрон в атомі – us1, лужноземельні – us2.

Ядро атома. Атомне ядро складається з протонів (р) і нейтронів (n), які об’єднуються під загальною назвою нуклони. Природа елементарних часток р і n визначається трьома кількісними характеристиками: масою, зарядом і спіном.

Протон (р) – частка з масою 1,007276 в. о, зарядом +1 (заряд рівний за величиною заряду електрона, але протилежний за знаком) і спіном ±Квантово-механічна теорія будови речовини.

Нейтрон – частка з масою 1,008665 в. о, електричного заряду і спіном ±Квантово-механічна теорія будови речовини.

Властивості ядра визначаються його складом – числом протонів (Z) і нейтронів (W), що входять до складу ядра і визначають його масове число А: А = Z + W. Масове число і порядковий номер елемента (число протонів) називають числовими індексами (зліва символу хімічного елемента: верхній індекс – масове число; нижній індекс – число протонів). Наприклад:


Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини


Атоми з одинаковим числом протонів і різною кількістю нейтронів у ядрі називають ізотопами.

Атоми з одинаковим числом нуклонів (А) і різним числом протонів і нейтронів – ізобарами. Наприклад:


Квантово-механічна теорія будови речовини і Квантово-механічна теорія будови речовини– ізотопи; Квантово-механічна теорія будови речовини і Квантово-механічна теорія будови речовини– ізобари


Ядра атомів природних елементів бувають стійкими і радіоактивними. Якщо число протонів приблизно дорівнює числу нейтронів, ядра атомів елементів стійкі. Якщо число нейтронів значно перевищує число протонів, то ядра стають нестійкими. Стійкість ядер характеризується параметрами Бора – значенням співвідношення


Квантово-механічна теорія будови речовини


Якщо це співвідношення більше ніж 33, то ядро нестійке, радіоактивне. Елементи з порядковими номерами Z = = 84 – 92 розміщені в періодичній системі за вісмутом – радіоактивні.


Квантово-механічна теорія будови речовини


Радіоактивними є ізотопи елементів з порядковими номерами 93–104, які добувають штучно внаслідок ядерних реакцій.

Радіоактивністю називається самовільне перетворення нестійкого ізотопу одного хімічного елементу в ізотоп іншого елементу, що супроводжується випромінюванням елементарних частот, або ядер. Число ядер Р радіоактивного ізотопу, що розпалися за одиницю часу прямопропорційне загальній кількості ядер Q цього ізотопу (закон радіоактивного розпаду): Р = λ · Q, де λ – коефіцієнт пропорціональності, або константа радіоактивного розпаду, яка для кожного радіоактивного ізотопу має своє певне значення.

До основних видів радіоактивного розпаду належать α-розпад, β-розпад, електронний захват і спонтанний поділ ядер.

При α-розпаді ядро випромінює α-частку Квантово-механічна теорія будови речовини, що приводить до зменшення заряду вихідного радіоактивного ядра на 2, а його масового числа на 4. Отже, в результаті утворюється атом елемента зміщеного від вихідного радіоактивного елемента на два місця вліво в періодичній системі. Наприклад:


Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини+ Квантово-механічна теорія будови речовини


При β-розпаді ядро випромінює електрони (β–-частинку) завдяки перетворенню одного нейтрона ядра у протонза схемою:


n → p + β– +Квантово-механічна теорія будови речовини


Квантово-механічна теорія будови речовини – антинейтрино. υ-нейтрино і Квантово-механічна теорія будови речовини-антинейтрино – елементарні частки, які не мають заряду і не характеризуються масою спокою, але відрізняються одна від одної спіном. При β-розпаді заряд ядра збільшується на одиницю, а масове число не змінюється, тобто утворюється ізотоп елемента з порядковим номером на одиницю більше, ніж у вихідного. Наприклад:


Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини + β– + Квантово-механічна теорія будови речовини


Для ядер, у яких число нейтронів менше за число протонів, характерний позитронний розпад, тобто розпад з виділенням (β+) позитрона. Позитрон – елементарна частка з масою електрона і позитивним елементарним зарядом. При β+-розпаді один протон перетворюється в нейтрон за схемою: р → n + β+ + Квантово-механічна теорія будови речовини. При цьому розпаді заряд ядра зменшується на одиницю, а масове число не змінюється:


Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини + β+ + υ


Електронний захват полягає в тому, що електрон з найближчого до ядра шару захвачується ядром і при цьому один з протонів ядра перетворюється в нейтрон: р + Квантово-механічна теорія будови речовини → n. Наприклад:

Квантово-механічна теорія будови речовини+ Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини+ γ.


Для важких елементів крім α- і β-розпаду можливий самовільний поділ ядер. Це явище характерне для трансуранових елементів. Ізотопи 232Th, 238U і 235Cl є родопочатковими природних радіоактивних рядів важких елементів. Закінчується розпад утворенням складних ізотопів свинцю. Ряд перетворень 238U:


Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини

Квантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовиниКвантово-механічна теорія будови речовини


Квантово-механічна теорія будови речовини


Явище штучної радіоактивності було відкрите у 1932 році Ірен і Фредеріком Кюрі. Під час ядерних реакцій відбувається взаємодія відповідних часток (n, p, α) з ядрами хімічних елементів


Квантово-механічна теорія будови речовини

Квантово-механічна теорія будови речовини

Квантово-механічна теорія будови речовини


Для розвитку ядерної хімії велике значення мало відкриття у 1939 р. поділу ядер урану тепловими нейтронами:

Квантово-механічна теорія будови речовини


Ядро розщеплюється на два нові радіоактивні ядра з різними масами. Поділ ядра супроводжується виділенням великої кількості енергії. При цьому замість одного нейтрона утворюються 2,3 нові, які можуть спричинювати подальший поділ ядер. На цьому грунтується дія атомної бомби. На керованих реакціях поділу ядер урану, плутонію грунтується дія ядерних реакторів.

Термоядерні реакції – вид ядерних реакцій, що відбуваються при високих температурах:


Квантово-механічна теорія будови речовини


Квантово-механічне пояснення будови молекул


Вчення про хімічний зв’язок – центральна проблема сучасної хімії. Незнаючи природу взаємодії атомів у речовині не можна зрозуміти механізм утворення хімічних сполук, їх склад, будову і реакційну здатність.

Сукупність хімічно зв’язаних атомів – це складна система атомних ядер і електронів. Певному просторовому положенню атомних ядер відповідає певний розподіл електронної густини. Описати хімічний зв’язок у речовині означає встановити, як саме розподіляється електронна густина. Залежно від характеру розподілу електронної густини в молекулах речовини розрізняють такі основні типи хімічного зв’язку: повалентний, іонний і металічний. Для переважної більшості речовин характерне накладання різних типів зв’язків.

Хімічний зв’язок між атомами в основному здійснюється так званими валентними електронами: у-, s- і p-елементів валентними є електрони зовнішнього енергетичного рівня, а у d-елементів – електрони s-стану останнього і d-стану передостаннього енергетичних рівнів.

Деякі параметри молекули. Інформацію про будову речовини можна одержати, досліджуючи її фізичні і хімічні властивості. Зокрема, за допомогою фізичних методів дослідження визначають основні параметри молекули – міжядерні віддалі, валентні кути і геометрію молекул. Довжиною зв’язку називається віддаль між ядрами двох хімічно зв’язаних атомів, які урівноважені силами притягання та відштовхування, а внутрішня енергія молекули при цьому мінімальна.

Встановлено, що довжина зв’язку зменшується із збільшенням порядку або кратності зв’язку. Наприклад (1Е = 1·10–8 см):


d(C–C) = 1,541 ± 0,003Е;

d(C=C) = 1,337 ± 0,006Е;

d(CєC) = 1,204 ± 0,002Е.


Оцінити довжину хімічного зв’язку в молекулі АВ можна виходячи з міжядерних віддалей в простих речовинах А2 і В2:


А2 + В2 → 2АВ; dA–B = Квантово-механічна теорія будови речовини


Якщо значення довжини зв’язків залишаються постійними в ряду молекул або ковалентно побудованих твердих сполук і якщо довжина ковалентного зв’язку А–В рівна середньому значенню довжин зв’язків А–А і В–В, то атомам можна приписати ковалентні радіуси, і тоді довжина хімічного зв’язку буде рівна сумі ковалентних радіусів відповідних елементів. Так, наприклад, у всіх насичених сполуках С–С = 1,54–1,58Е; в ароматичних С–С = 1,39–1,42Е

Валентні кути. Схематично валентні кути можна представити прямими лініями, що з’єднують ядра атомів у молекулі. Валентні кути залежать від природи атомів і характеру зв’язку. Якщо двохатомні молекули А2 або АВ можуть мати тільки лінійну конфігурацію, то уже трьохатомна молекула може бути як лінійною В–А–В, так і кутовою В А В або замкненою В А В. До І типу (лінійних) відносяться BeCl2, ZnBr2, CdI2, CO2. До ІІ типу – H2O, H2S. АВ3 – плоска пірамідальна або Т-подібна: BCl3, NH3, ClF3. 4-атомні молекули: С2Н2 – лінійна, СН4 – тетраедрична.

Енергія хімічного зв’язку – одна з основних характеристик хімічного зв’язку. Вона визначає міцність зв’язку.

Мірою міцності хімічного зв’язку може служити як кількість енергії, що витрачається на її розрив, так і величина, яка при сумуванні по всіх зв’язках дає енергію утворення молекули з атомів (середня енергія зв’язку). Енергія розриву – додатня.

Енергія зв’язку

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: