Xreferat.com » Рефераты по физике » Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

задачи координации изоляции" width="166" height="48" align="BOTTOM" border="0" />,

где Кз - коэффициент загрузки.

Для Т: Проектирование подстанции 110/6 кВ с решением задачи координации изоляции15,06/2*10,54=0,7

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции15,06/10,54=1,4

Расчет токов трехфазного КЗ.

Для проверки аппаратов и проводников по режиму КЗ на электродинамическую и термическую стойкость и высоковольтных выключателей по отключающей способности необходимо определить следующие токи КЗ:

Iпо- начальный периодический ток КЗ (кА);

iу- ударный ток КЗ (кА)

Inτ, iaτ- периодическая и апериодическая составляющие тока КЗ для момента времени τ (кА)

τ- время размыкания контактов.

Расчет производим в следующем порядке:

На основании структурной схемы с учетом принятого режима работы трансформаторов составляется расчетная схема, в которой показываются основное оборудование и источник (Т, Т, энергосистема и связь с энергосистемой- ЛЭП) и приводятся их параметры.

На U= 6кВ принята раздельная работа СТ в целях ограничения токов КЗ в соответствии с НТП ПС.

Составляем схему замещения (смотри рисунок 2.1) для всех элементов расчетной схемы. Производим расчет сопротивлений в относительных единицах относительно базовой мощности, которую принимаем Sб=1000 МВА.


Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Рисунок 2.1


Производим расчет сопротивлений элементов схемы в относительных единицах:

Х1=Хс*Sб/Sсист=1,8*1000/1200=1,5 о.е.

Х2=Х3=Х0*L*Sб/Uср=0,28*30*1000/13225=0,64 о.е.

Х4=Х5=Uк/100*Sб/Sнт=10,5/100*1000/16=6,56 о.е.

Производим преобразование схемы замещения относительно точек КЗ:

т. К1: U= 110 кВ

Х6=(Х1+Х2)/2=1,07 о.е.

т. К2: U= 6 кВ

Х7=Х6+Х5=1,07+6,56=7,63 о.е.

Расчетная таблица токов трехфазного КЗ.


Таблица 2.2

очка КЗ К1 К2
Базовая мощность Sб (МВА) 1000
Среднее напряжение Uср (кВ) 115 6,6
Источники Система
Ном. Мощность источников Sном (МВА) 1200
Результирующие сопротивления Xрез (е.о.) 1,07 7,63

Базовый ток

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (кА)

5,02 87,5
ЭДС источника Е`` 1,0

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (кА)

4,7 11,47
Куд 1,608 1,56
Та 0,02 0,02

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (кА)

10,7 25,3

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции(кА)

6,02 10,5

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

1 1

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (кА)

4,7 11,47

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (с)

0,035

tсв=0,025

0,025

tсв=0.015

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

0,17 0,29

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции (кА)

1,13 4,7

tс.в.- собственное время отключения (без времени, затраченного на гашение дуги).


Сводная таблица результатов расчетов токов КЗ.


Таблица 2.3

Точка КЗ Uср (кВ) Источник Токи трехфазного КЗ (кА)



Iп0 Iпτ iаτ iуд

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

К1 115 система 4.7 4.7 1.13 10.7 7.77
К2 6.6
11.47 11.47 4.7 25.3 20.9

Выбор аппаратов и проводников

Определение расчетных условий для выбора аппаратов и проводников по продолжительным режимам работы.

- на стороне 110 кВ

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции А

где Проектирование подстанции 110/6 кВ с решением задачи координации изоляции- следуйщая мощность СТ или АТ по шкале ГОСТа.

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции А

- на стороне 6 кВ

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции А

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции А

Выбор высоковольтных выключателей (ВВ) и разъединителей (РЗ) на всех напряжениях

а стороне ВН 110 кВ СТ:

Расчетные токи продолжительного режима в цепи 110 кВ Т:

Iнорм.= 54,6 А

Imax= 113,4 А

Расчетные токи КЗ на шинах 110 кВ:

Iп0= 4,7 iуд=10,7

Iпτ= 4,7 iaτ=1,13

Тепловой импульс на шинах 110 кВ:

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции4,7*4,7(0,155+0,02)=3,87 кА2 сек

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции0,1+0,055

Выбираем по [12] высоковольтный выключатель для наружной установки типа ВГУ-110-40У1

Привод высоковольтного выключателя: откл – пневматическое вкл - пружинное

Выбираем по [12] разъединитель для наружной установки типа РНДЗ-1-110/1250Т1

Привод разъединителя ПРН-110У1

Сравнение расчетных и каталожных данных.


Таблица 2.4

Расчетные данные Справочные денные

ВГУ-110-40У1 РНДЗ-1-110/1250Т1
Uуст.=110 Uном=110 кВ Uном=110кВ
Imax=113,4 Iном= 2000 А Iном=2000А
Iпτ=4,7

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции= 40 кА

-
iаτ=1,13 Iaном= 56,6 -
Iп0=4,7 Iдин=40кА -
iуд=10,7 iдин=102 кА -
Вк=3,87кА2 сек

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции=3200

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции=4800


На стороне НН 6 кВ СТ:

Расчетные токи продолжительного режима в цепи 6 кВ Т:

Iнорм.=1000 А

Imax=2076,9 А

Расчетные токи КЗ на шинах 6 кВ:

Iп0=11,47 кА iуд=25,3 кА

Iпτ=11,47 кА iaτ=4,7 кА

Тепловой импульс на шинах 6 кВ:

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции11,47*11,47(0,125+0,02)=19,076 кА2 сек

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции0,17+0,025

Выбираем по [1] высоковольтный выключатель для внутренней установки типа ВБЭ-10(6)-31,5(40)

Привод высоковольтного выключателя электромагнитный.

Сравнение расчетных и каталожных данных.


Таблица 2.5

Расчетные данные Справочные денные


Uуст.=6кВ Uном=10(6) кВ
Imax=2076,9 Iном=3150 А
Iпτ=11,47

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции=31.5(40) кА

iаτ=4,7 iа ном=58
Iп0=11,47 Iдин=31,5(40) кА
iуд=25,3 iдин=80 кА
Вк=19,076кА2 сек

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции=


Выбор проводников в основных цепях ПС


На напряжения 110 кВ выбираем гибкие сталеалюминевые провода; на напряжение 6 кВ – жесткие алюминиевые шины.

В цепях отходящих линий 6 кВ – силовые кабели. Для крепления шин на 6 кВ выбираем опорные изоляторы.

Выбор сборных шин и токоведущих частей на U 110 кВ в цепи


Таблица.2.6

Условия выбора Сборные шины 110 кВ и токоведущие части от ТДН-16000/110/6,6 до сборных шин 6 кВ
Imax<Iдоп

Согласно п.1.3.28 ПУЭ сборные шины и ошиновка в пределах ОРУ выбирается по нагреву (по допустимому току наиболее мощного присоединения)

Imax=113,4 А,

Iнорм=54,6А

Тип проводника, его параметры[2] c.428

АС300/39

Iдоп=690 А, d=24мм, r0=1,2см

Проверка шин на схлестывание, электродинамическую стойкость Не производится, т.к. Iпо=4,7кА<20 кА
Проверка шин на термическое действие тока КЗ Не производится, т.к. шины выполнены голыми проводами на открытом воздухе

Проверка по условиям коронирования

1.07 Е < 0.9 Е0

Дср=Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции


Выбор сборных шин и ошиновки на ПС

Сборные шины 6,6 кВ и токоведущие части СШ 6,6.


Таблица.2.7

Условия выбора Согласно п.1.3.28 ПУЭ сборные шины и ошиновка в пределах ЗРУ выбираются по нагреву (по допустимому току наиболее мощного присоединения).

Imax < Iдоп

Тип проводников

Imax=2076,9А

Однополосные шины расположены «плашмя» ША Iдоп=2410 (2289) А

b=80 мм, h=10 мм, q=800 мм2, l=2м, а=0,5м

Проверка шин на термическую стойкость при КЗ по условию:

qmin < qвыбр

Проектирование подстанции 110/6 кВ с решением задачи координации изоляциимм

qmin=47.995<800


Значение С см.[12], стр. 192

Проверка шин на электродинамическую стойкость по условию:

Проектирование подстанции 110/6 кВ с решением задачи координации изоляцииМПа

Gрасч=8,36 мПа

8,36 < 75

Условие выполняется

Выбор изоляторов

Выбор опорных и проходных изоляторов внутренней установки для крепления жестких сборных шин 6 кВ.

Выбираем опорный изолятор ИО-10-3,75У3 на напряжение 6кВ с минимальной разрушающей силой на изгиб Fразр=3750кН, высота изоляторов Hиз=120 мм. Проверяем изолятор на механическую прочность. Максимальная сила, действующая на изгиб:

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

где принято расстояние между фазами а=0,5 м, пролет между изоляторами l=2 м.

Поправка на высоту шины:

Проектирование подстанции 110/6 кВ с решением задачи координации изоляции где b – ширина для полосовых шин

Таким образом, изолятор ИО-10-3,75У3 проходит по механической прочности.


3. Выбор электрооборудования подстанции


3.1 Устройство и принцип действия воздушного выключателя типа ВВБ-110 кВ


Iном.=2000 А, Iоткл. =31,5 кА,

Сопротивление контура полюса = не более 80 мкОм,

Сопротивления одного элемента = 100 Ом.

Характеристики выключателя, снятые при номинальном, минимальном и максимальном рабочих давлениях при простых операциях и сложных циклах, должны соответствовать данным завода изготовителя. Количество операций и сложных циклов, выполняемых каждым выключателем, устанавливается согласно табл.3.1.1.


Таблица 3.1.1 - Условия и число опробований выключателей при наладке

Операция или цикл Давление при опробовании Напряжения на выводах Число операций и циклов
1. Включение Наименьшее срабатывание Номинальное 3
2. Отключение То же То же 3
3. ВО « » 2
4. Включение Наименьшее рабочее « 3
5. Отключение То же » 3
6. ВО « » 2
7. Включение Номинальное « 3
8. Отключение То же » 3
9. ОВ « » 2
10. Включение Наибольшее рабочее 0,7 номинального 2
11. Отключение То же То же 2
12. ВО « Номинальное 2
13. ОВО » То же 2
14. ОВО Наименьшее для АПВ « 2

Устройство и принцип действия воздухонаполненного выключателя типа ВВБ-110 (выключатель воздушный баковый для номинального напряжения 110 кВ) научно-производственного объединения (НПО) «Электроаппарат»). Выключатель рассчитан на давление воздуха 2 МПа. Гасительное устройство с двумя разрывами заключено в стальной бачок, изолированный от земли с помощью колонны фарфоровых изоляторов. Объем бачка рассчитан на две операции отключения. Расход воздуха пополняется из ресивера и общестанционной магистрали сжатого воздуха по изолирующему воздуховоду. Давление в бачке поддерживается близким к номинальному. В бачок встроены вводы 6 из эпоксидной смолы, наружные части которых защищены фарфоровыми покрышками. Неподвижные контакты укреплены на вводах, а подвижные в виде ножей на металлической траверсе, которая, в свою очередь, жестко связана со штоком. Неподвижные контакты со встроенными контактными ламелями находятся внутри металлических сопл, направляющих воздух в процессе отключения к выхлопному клапану (его также называют дутьевым клапаном). Контактная траверса и тарелка выхлопного клапана приводятся в движение поршневыми устройствами, действие которых согласовано. Клапаны управления поршневыми устройствами расположены внизу и находятся под потенциалом земли. Основные разрывы дугогасительного устройства шунтированы резисторами с вспомогательными контактами для отключения сопровождающего тока. Резисторы укреплены в бачке на вводах. Вспомогательные контакты помещены под резисторами. Клапаны управления этими контактами вынесены наружу. Для равномерного распределения напряжения между разрывами в положении «отключено» предусмотрен делитель напряжения емкостного типа.

В процессе отключения поршневое устройство привода поднимает тарелку выхлопного клапана. Поднимается также контактная траверса, и контакты размыкаются. Дуги, образующиеся на контактах, перебрасываются на концы неподвижных контактов и вспомогательные электроды. Они гасятся в потоке воздуха, вытекающего из бачка через сопла и выхлопной клапан. После погасания дуг выхлопной клапан закрывается, а траверса с ножами остается в верхнем отключенном положении. Промежуток между контактами обеспечивает достаточную электрическую прочность при давлении 2 МПа. Вспомогательные контакты размыкаются приблизительно через 0,035 с после размыкания главных контактов, и возникшие между ними дуги гасятся потоком воздуха вытекающего в атмосферу через внутренние полости контактов. После погасания дуг вспомогательные контакты остаются разомкнутыми. При включении выключателя контактная траверса опускается поршневым устройством. Ножи входят в прорези в верхней части сопл, и контакты замыкаются. Предварительно замыкаются вспомогательные контакты.

Поршневые устройства и, приводящие в движение контактную траверсу и выхлопной клапан, расположены в зоне высокого потенциала. Соответствующие клапаны управления расположены в шкафу управления и находятся под потенциалом земли. Они связаны с поршневыми устройствами изолирующим воздуховодом, расположенным внутри опорной колонны. Номинальный ток отключения выключателей серии ВВБ составляет 31-35 кА. Время отключения 0,08 с (4 периода).


3.2 Устройство и принцип действия элегазового выключателя типа ВГУ-110У1


Iном = 2000 А

Iоткл = 40 кА

Элегаз (SF6 - шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2- 3 раза выше прочности воздуха. При давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.

В элегазе при атмосферном давлении может быть погашена дуга с током, в 100 раз превышающим ток, отключаемый в воздухе при тех же условиях. Исключительная способность элегаза гасить дугу объясняется сильным сродством его с электронами. Молекулы газа улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза, т. е. при газовом дутье, поглощение электронов из дугового столба происходит еще более интенсивно.

В элегазовых выключателях гасительное устройство помещено в герметизированный заземленный бак с проходными изоляторами и встроенными трансформаторами тока. Бак заполнен элегазом при давлении 0,4-0,6 МПа. Применение получили автопневматические дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Таким образом, элегазовый выключатель представляет собой замкнутую систему (без выброса газа наружу). Он во многом схож с баковым масляным выключателем, однако в нем отсутствуют горючие материалы и масса его значительно меньше массы масляного выключателя.

Поршень и полый контакт неподвижны. Цилиндр с соплом из фторопласта и розеточным контактом перемещаются по горизонтальной оси с помощью пневматического привода. соответствует положению «включено», контакты замкнуты. В. процессе отключения цилиндр перемещается приводом вправо. При этом газ в полости сжимается, контакты размыкаются и между ними образуется дуга. По выходе вспомогательного электрода из внутренней полости контакта газ начинает вытекать через эту полость. Если отключаемый ток мал (порядка нескольких десятков ампер), поток газа через внутреннюю полость контакта достаточен для гашения дуги при относительно небольшой ее длине в течение приблизительно 10 мс. При отключении тока к.з. гашение дуги происходит по выходе контакта из сопла, когда вследствие увеличивающегося давления газа в полости создается сильный поток газа сквозь столб дуги. При включений цилиндр с соплом и розеточным контактом перемещаются влево.

Исследования показали, что более эффективным является гасительное устройство аналогичной конструкции, но с двусторонним дутьем. Выключатель с таким усовершенствованным гасительным устройством удовлетворяет требованиям, предъявляемым к выключателю ПО кВ с отключаемым током 31,5 кА. Отключение обеспечивается при скорости восстанавливающегося напряжения 5 кВ/мкс. Гашение дуги происходит при расстоянии между контактами около 100мм. Длительность горения дуги составляет 20-25 мс. В отличие от воздушных выключателей отключение происходит бесшумно.

При ремонте выключателя и вскрытии баков необходимо сберегать газ с целью дальнейшего его использования, так как стоимость газа относительно высока. Для этого служат вакуумный насос, запасный резервуар для газа и компрессор. Перечисленные элементы установлены на монтажной тележке. С помощью компрессора газ из выключателя перемещают в запасный резервуар. Компрессор позволяет снизить давление в баке до 100 Па, т. е. позволяет удалить из бака почти весь газ. После этого могут быть открыты дверцы в баке для доступа к гасительному устройству. Заполнение бака газом производится в следующем порядке. Дверцы бака закрывают и с помощью вакуумного насоса удаляют из бака воздух. Давление в баке снижают до 100 Па. После этого бак наполняют газом из запасного резервуара.

Элегаз не ядовит, однако продукты его распада под действием дуги ядовиты. Поэтому при ремонте выключателей принимают меры предосторожности: вскрытие бака, и выемку гасительного устройства производят в противогазах.

Первый отечественный элегазовый выключатель 110 кВ предназначен и соответствующим образом выполнен для комплектного герметизированного РУ с газовой изоляцией. Аналогичные устройства предполагается выпускать для напряжения 220 кВ и выше.


3.3 Устройство и технические характеристикивакуумного выключателя ВБЭ-10(6) – 31,5(40)


Вакуумные выключатели внутренней установки предназначены для коммутации электрических цепей переменного тока частотой 50 Гц с номинальным напряжением 10 (6) кВ в нормальном и аварийном режимах б системах с изолированной или компенсированной нейтралью.

Выключатели соответствуют требованиям ГОСТ 687-78, ГОСТ 18397-86, КУЮЖ.674152.001 ТУ КУЮЖ. 674152.024 ТУ.

Выключатели поставляются на все КРУ - строительные предприятия России, Украины, Польши, а также широко используются для замены масляных и маломасляных выключателей, отработавших свой ресурс, по программе Ретрофит во всех КРУ и КСО прежних лет выпуска.

Поставка осуществляется согласно опросного листа (см. www.kontakt-saratov)


Табл. 3.3.1 - Технические характеристики выключателя

Наименование параметров

ВБЭ – 10 - 20

ВБЭ - 10 - 31,5 (40)

Номинальное напряжение, кВ 10 10
Номинальный ток, А 630-1600 630-3150
Номинальный ток отключения, кА 20 31,5(40)

Сквозной ток короткого замыкания;

- ток электродинамической стойкости, кА


51


80(102)

- ток термической стойкости, кА 20 31,5(40)
- время протекания тока термической стойкости, с 3 3
Номинальное напряжение цепей пост, тока 110:220 110:220
питания привода, В перем. тока 220 220

Токи потребления электромагнита включения

-пост.,А

80-40 95;50
-перем.,А 40 45
Токи потребления электромагнита отключения -пост.,А 0,9;0.45 3:1,5
-перем.,А 2 2
Собственное время включения, с 0,1 0,1
Собственное время отключения, с 0,04 0,04
Диапазон рабочих температур окр.среды, °С Ресурс по коммутационной стойкости: +50/-60 +50/ -60
- при номинальном токе, циклов ВО - при номинальном токе отключения, циклов ВО 50000 100 50000 100
Ресурс по механической стойкости, циклов ВО 50000 50000
Масса, кг, не более 120 150

3.4 Краткая характеристика трансформатора тока ТФЗМ


1. Расшифровка условного обозначения трансформаторов тока: Т- трансформатор тока; Ф - в фарфоровой покрышке;

3-с сердечником для защиты от замыканий на землю. М - модернизированный.

2. Трансформатор тока предназначен для наружной установки в открытых распределительных устройствах для передачи сигнала измерительной информации измерительным прибором, устройствам защиты и управления.

3. Выводы первичной обмотки обозначаются Л1 и Л2, выводы вторичной обмотки И1 и И2.

4. Верхняя цилиндрическая часть трансформатора представляет собой расширитель для масла, который обеспечивает компенсацию температурных изменений объема масла.

5. Трансформатор заполнен трансформаторным маслом. Уровень масла контролируется по маслоуказателю. При температуре масла 20*С уровень масла находится против красной черты маслоуказателя или в средней его части. На каждые 10 *С повышения или понижения температуры уровень масла соответственно повышается или понижается у трансформатора на класс напряжения:

33-110кВ - на 10мм

132-500кВ - на 25мм

6. Воздухосушитель или дыхательный клапан предназначен для сообщения внутренней полости трансформатора с наружным воздухом без попадания пыли и влаги. Верхняя часть стеклянного цилиндра воздухоосушителя заполнена силикагелем-индикатором, который при насыщении влагой меняет свою окраску на розовый цвет.

7. Коробка вторичных выводов закрыта крышкой. Табличка с паспортными данными трансформатора, электрическими схемами и техническими данными вторичных обмоток расположена на цоколе.

8. Через масловыпускной патрубок производится слив и отбор проб масла.

9. Цоколь трансформатора - это несущая опорная конструкция, которую необходимо заземлить для чего, шину заземления следует присоединить к болту заземления с меткой "3".

10. Основные технические данные:

Тип трансформатора Напряжение Uhom, кВ Напряжение наибольшее рабочее Шр, кВ Номинальный ток первичный, А Номинальная предельная кратность обмоток для защиты, Кном

ТФЗМ-35

35 40,5 15-3000 18-28

ТФЗМ-110

110 126 50-2000 20-30

ТФЗМ-220

220 252 300-2000 12-25

11.У трансформаторов предназначенных для работы с двумя и тремя коэффициентами трансформации, предусмотрена возможность переключений на первичной обмотке путем соединения шин наружными или внутренними перемычками. На вторичной стороне путем присоединения к необходимым выводам вторичной обмотки.

12.Трансформатор тока отправляемый с предприятия-изготовителя, соединен перемычками на наибольший первичный ток.

Критерии и пределы безопасного состояния и режимов работы трансформаторов тока.

1. При эксплуатации трансформатора тока необходимо контролировать уровень масла, состояние силикагеля воздухосушительного фильтра, отсутствие течи масла, отсутствие нагрева контактов.

2. Цоколь трансформатора должен быть заземлен.

3. Во время работы трансформатора тока вторичные обмотки его должны быть всегда замкнуты на приборы или закорочены, так как на разомкнутой вторичной обмотке высокое напряжение.

Порядок подготовки к пуску, порядок пуска и обслуживание трансформатора тока во время нормальной работы и аварийных режимах.

1. После окончания монтажа, наладки и испытания трансформатора проверить наличие записей служб о готовности к включению.

2. Проверить выполнение всех заземлений на трансформаторе.

3. Проверить соединение маслоуказателъного стекла о крышкой трансформаторе тока (которое обеспечивает выравнивание потенциалов).

4. Проверить уровень масла в маслоуказательном стекле, наличие силикагеля в воздухосушительном фильтре, отсутствие течи масла.

5. Не задействованные вторичные обмотки трансформатора тока должны быть закорочены. З.б. Осмотр трансформатора тока производить на подстанциях с постоянным оперативным персоналом ежедневно, без постоянного оперативного персонала не реже одного раза в месяц.

6. При возникновении аварийных режимов с трансформатором необходимо немедленно поставить в известность диспетчера ОДС и действовать согласно местной инструкции по ликвидации аварийных ситуаций. К аварийным режимам относятся:

- снижение уровня масла, течь масла из трансформатора

- изменение цвета силикагеля с голубого на розовый

- нагрев контактов

7. Течь масла из трансформатора может происходить из-за нарушение уплотнений между цоколем и покрышкой, между покрышкой и маслорасширителем в местах сочленения деталей маслоуказателя, а также в местах выхода выводов первичной обмотки Л1 и Л2. Если имеется течь масла в маслоуказательном стекле, трансформатор должен быть отключен.

8. При изменении цвета силикагеля с голубого на розовый необходимо сообщить дефект в группу ПС и диспетчеру ОДС ПЭС.

9. При нагреве контактов и невозможности отключение трансформатора тока, необходимо принять меры к снятию нагрузки с него.

10. При отключении вторичных обмоток от цепей приборов и защит необходимо предварительно замкнуть накоротко вторичные обмотки во избежание их повреждения.

Порядок допуска к осмотру, ремонту и испытаниям трансформатора тока.

1. Вывод в ремонт трансформатора тока должен быть оформлен и ОДС или ЦДС согласно принадлежности оборудования.

2. Перед началом работ на трансформаторе тока необходимо выполнить организационные и технические мероприятия по созданию безопасных условий труда.

3.При выполнении капитальных ремонтов трансформаторов пользоваться картой или проектом производства работ.

Требования по безопасности труда, взрыво- и пожаробезопасности при эксплуатации трансформатора тока.

1. Персонал обслуживающий трансформатор тока, должен быть ознакомлен с настоящей инструкцией, хорошо знать устройство, принцип действия и специфические особенности конструкции трансформатора тока, а также должен пройти соответствующий инструктаж.

2. Эксплуатация трансформатора тока должна производиться в соответствии с настоящей инструкцией, а также "Правил устройства электроустановок", "Правил технической эксплуатации электрических станций и сетей Российской Федерации", "Межотраслевых правил по охране труда (правила безопасности)", "Правил пожарной безопасности для энергетических предприятий" и инструкции завода изготовителя.

3. Подъем трансформатора тока осуществлять за четыре подъемных кольца, находящихся на цоколе.

4. При замене масла включение трансформатора тока под напряжение может производиться не ранее чем через 24 часа.

5. При возникновении постороннего шума в трансформаторе, снижении уровня масла, размыкания вторичной обмотки, трансформатор тока должен быть отключен.

6. В местах установки трансформатора тока не допускается наличие промасленного грунта, поросли и сухой травы.

7. Пролитое масло и другие горючие жидкости следует немедленно убрать. Промасленные обтирочные материалы складывать в специальный закрытый металлический ящик.


3.5 Краткая характеристика трансформатора напряжения НТМИ 6-10кВ


Трансформаторы напряжения предназначены для питания электрических измерительных приборов (цепей защиты) сигнализации.

Конструкция трансформаторов состоит из магнитопровода, выполненного из электротехнической стали,обмоток с их изоляцией, отводов и др. конструктивных деталей, служащих для соединения отдельных частей в единую конструкцию.

Трансформаторы напряжения в зависимости от исполнения могут иметь две вторичные обмотки из которых одна (основная)предназначена для питания приборов и цепей защиты, а другая(дополнительная)для питания цепей защитных устройств и контроля изоляции сети.

Исполнение и тип трансформатора, значения напряжения, число обмоток, классы точности, мощности в классах точности, а также предельные мощности трансформаторов напряжения указываются в эксплуатационной документации.

Нулевую точку первичной обмотки необходимо заземлить для правильной работы схемы. При замыкании на землю одной из фаз магнитный поток данной фазы будет равен нулю. Следовательно, во вторичной обмотке этой фазы напряжение будет равно нулю

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: