Xreferat.com » Рефераты по химии » Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода"

Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода"

компоненты выброса отсутствуют полностью.

 

1.3.5 Влияние водородной энергетики на окружающую среду

При рассмотрении основных принципов водородной энергетики и ее влияния на окружающую среду, нельзя ограничиваться лишь загрязнением воздуха, так как это не единственный тип загрязнения. При сравнении различных энергетических источников следует обсудить и другие аспекты. Под этим можно подразумевать эффективность источников энергии, поэтому важно сопоставить водородную энергетику с другими энергетическими системами, такими как уголь - синтетическое топливо, атомная энергия - водород, атомная энергия - электричество и др.

С точки зрения охраны окружающей среды варианты водородной энергетики оцениваются выше старых энергетических систем, использующих ископаемые топлива. Заслуживает внимания тот факт, что, хотя энергетическая система солнечная система - водород самая безопасная по отношению к окружающей среде, все же система солнечная энергия - электричество будет эффективнее, так как в ней используется меньшее количество материалов. Предполагается что система солнечная система - водород будет работать в сочетании с фотогальваническими элементами, в которых расходуется большое количество кремния. Поэтому, если система море-солнце или с ветровой энергией, то влияние на окружающую среду будет меньше, и энергетическая система солнечная система водород будет более приемлемой, чем система солнечная система - электричество [6].

 

1.3.6 Дополнительные сведения о применении водорода в бытовых целях

Вся энергия, предназначенная для бытовых целей, может быть получена из водорода (освещение, отопление и приготовление пищи). Однако это не самый оптимальный путь применения водорода.

Освещение, отопление и приготовление пищи. Для освещения не обязательно применять электричество, можно воспользоваться «холодным светом», получаемым при взаимодействии водорода с фосфором. Для приготовления пищи, отопления помещений может быть использован специальный керамический материал. Однако отопление помещений лучше осуществлять с помощью электрических насосов.

Электричество в доме. По-видимому, при внедрении водородной энергетики уменьшится потребление электроэнергии в жилых домах. Снизятся затраты на работу различных электронных устройств. Однако для снабжения водородом зданий необходимо полностью переоборудовать трубопроводы, горелки и большую часть другого оборудования [1].

 

1.3.7 Пути развития водородной энергетики

Следует сразу установить, что преимущества водородной энергетики могут быть достигнуты только путем постадийного внедрения этой энергетики (исследование, проектирование, создание опытной установки, небольшая проверка, более крупная проверка и, наконец, полный переход на водородную энергетику). На первой стадии в качестве источника для получения водорода можно использовать уголь, который при нагревании с водой образует смесь СО и Н2; СО затем будет окислен до СО2 и выброшен в атмосферу, а Н2 доставят по трубопроводу на ближайшую установку. Здесь он может быть использован для получения электричества.

Во второй стадии в качестве источника энергии для получения водорода может быть использована ядерная установка; образующийся водород затем будет доставляться в город и применяться для получения электроэнергии или для работы части транспорта.

На третьей стадии может быть использован маленький город (например, с населением 10 000), где будет построена станция для сбора солнечной энергии. Если это гористая местность, можно установить экспериментальные крупные аэрогенераторы.

Важной является четвертая стадия освоения, на осуществление которой необходимы суммы, исчисляемые миллиардами. На этой стадии следует перевести часть энергетики на водород, например, жилищно-коммунальное хозяйство, транспорт, промышленность.

Экологическая "чистота" водорода не вызывает сомнений, если учесть, что практически единственным продуктом его сгорания является вода и что в этом случае полностью отсутствуют характерные для углеводородных топлив загрязняющие атмосферу соединения типа диоксидов углерода и серы, а также паров углеводородов. Кроме того, водород это и достаточно калорийное топливо. По теплотам сгорания (34 ккал/г) он намного превосходит такие классические виды топлива, как углеводороды (10 ккал/г) и древесина (4 ккa/г). Конечно, нельзя не учитывать и большие трудности, связанные с решением и ряда дополнительных задач, таких, как:

а) поиск и разработка первичных источников энергии, которые могут быть использованы для синтеза водорода;

б) безопасность хранения, транспорта и больших количеств газообразного и жидкого водорода;

в) эффективное преобразование энергии водорода при решении ряда конкретных энергетических задач.

Если говорить о поисках и разработках первичных источников, которые могут быть использованы для синтеза водорода, то, вероятно, следует начать с простейшего способа, известного каждому, кто хотя бы немного знаком с химией, - взаимодействия кислот и оснований с металлами:

Zn + (2HCl)aq → (ZnC12)aq + H2

Аl + (2NaOH)aq → (NaAIО2)aq + 3/2H2

В плане дальнейшего изложения очень важно подчеркнуть, что перспективными для создания водородной энергетики могут считаться только способы, основанные на использовании воды в качестве исходного сырья. Поэтому в дальнейшем при написании тех или иных уравнений химических реакций индекс "aq", характеризующий водную среду, будет опускаться.

Процесс необратим и для получения металла из образовавшихся оксидов (для повторного их применения) требует значительных затрат энергии.

Заслуживают внимания три варианта получения водорода из органического сырья.

Один из них - паровая конверсия металла, являющегося главным компонентом природного газа:

СН4 + Н2О → СО + 3Н2 - 50 ккал

СО + Н2О → СО + Н2 + 10 ккал

______________________________

СН4 + 2Н2О → СО2 + 4Н2 - 40 ккал

Второй более совершенный вариант основывается на парокислородной конверсии:

2СН4 + О2 → 2СО + 4Н2 + 16 ккал

СН4 + Н2О → СО + 3Н2 - 50 ккал

______________________________

7СН4 + 3О2 + Н2О → 7СО + 15Н2

Последующий процесс, связанный с конверсией СО, протекает, как и в первом варианте. Однако, как следует из уравнений в обоих вариантах, требуется затрата больших количеств дефицитного природного газа как исходного сырья.

Третий вариант основан на использовании процесса газификации угля:

тв + О2 → 2СО + 55 ккал

СТВ + Н2О пар → СО + Н2 - 30 ккал

Комбинацией этих двух реакций можно получить смесь СО и Н2 называемую "водяным газом" или «синтез газом». В последнее время метод получения водорода из воды и угля считается одним из наиболее перспективных. Весьма перспективным, по мнению специалистов, является вариант использования водяного пара для восстановления окислов железа при 800-9000С:

2FезО4 + СО + Н2 6FеО + Н2О + СО2 - 22 ккал

с последующей обработкой FeO водяным паром при 600-700 0С. После конденсации паров воды можно получить чистый водород:

3FeO + Н2О→Feз О4 + Н2 + 16ккал

Экономичность процесса здесь возрастает вследствие того, что последняя реакция экзотермична и позволяет некоторое количество выделяющегося тепла использовать для нагрева водяного газа до температур, при которых в соответствии с данной реакцией имеет место восстановление окислов железа. Несмотря на определенные трудности, железопаровой вариант получения водорода привлекает в настоящее время внимание большого числа исследователей во всех странах мира, поскольку связан с возможностью использования дешевых низкосортных углей в качестве восстановителя водяного газа. Казалось бы, самым простым и чистым способом получения водорода должен быть электролизный способ, непосредственно расщепляющий молекулу воды на водород и кислород. Однако этот процесс сам требует много электрической энергии и экономически пока остается невыгодным [2, 4, 5-15].

В электрохимии имеется такое понятие, как перенапряжение. Оно связано с избыточным напряжением, которое нужно приложить к электролитической ванне сверх ее равновесной электродвижущей силы для того, чтобы мог протекать процесс электролиза. При электролизе воды с целью получения водорода на катоде перенапряжение увеличивает необходимое электрическое напряжение и происходит дополнительный расход энергии. При величине напряжения в 0,3 В на каждые 1000 кг водорода требуется дополнительный расход 8300 квт-ч электроэнергии. Большая величина перенапряжения выделения водорода обусловливает то, что стоимость электролизного водорода пока в 2 - 2,5 раза выше стоимости водорода, получаемого из природного газа. В этой связи, однако, заслуживает должного внимания возможность практического осуществления варианта комбинирующего электролиза с прямым пиролизом воды. Последняя реакция (реакция пиролиза воды) сама по себе кажется весьма перспективной и первоначально заслуживает самостоятельного рассмотрения [4, 16-18].

l.3.8 Пuролuз воды

Для того, чтобы получать водород за счет термического разложения воды

2 Н2О ↔ Н2 + О2

нужно очень много тепла, т.е. нужно нагревать водяной пар до температур порядка нескольких тысяч градусов. Такой процесс может быть осуществлен только с применением устройств типа дугового плазмотрона. Однако здесь может быть применен принцип так называемых термохимических циклов, сущность которого состоит в том, что сильно эндотермический процесс разложения воды может быть расчленен на ряд последовательно чередующихся эндо - и экзотермических стадий, каждая из которых для своего осуществления требует значительно более низких температур, чем реакция (13). В свою очередь, возможность получения водорода путем термохимических реакций с использованием низкотемпературного тепла (700 - 900 ОС) открывает перспективы широкого использования тепла атомных реакторов. Это тем более заманчиво, что таким образом решаются проблемы получения водорода и утилизации тепла атомных реакторов, которое представляет возможную угрозу тепловому балансу в биосфере. Как правило, экзотермические стадии связаны с образованием неустойчивых продуктов окисления, и в частности кислорода в реакции (13). Совершенно очевидно, что в нашем случае для того, чтобы термохимический цикл не «разомкнулся», нужно, чтобы продукты окисления обладали невысокой термической стабильностью и легко отдавали кислород при умеренном нагревании.

 Таким образом, простейший, скажем двухстадийный (в идеале), цикл можно схематически представить следующим образом:

Х + Н2О → ХО + Н2;

ХО → Х + 1/2 О2.

Здесь первая стадия идет с выделением тепла самопроизвольно или при нагревании до невысоких температур, а вторая стадия протекает с поглощением тепла. Идеальный двухстадийный цикл пока трудно предложить. Более реальны трех-четырехстадийные термохимические циклы, как, например, цикл, именуемый «Марк-9»:

2FeCl2 + 8Н2О(г) 2Fе2Оз + 12НСI + 2Н2О; (15)

2FезО4 + ЗСl2 + 12НСI 6FеСlз + 6Н2О (г) + О2; (16)

6FеСlз 6FeCl2 + ЗСl2 (17)

Стадия (15) эндотермична: 600 - 700 ºС; стадия (16) экзотермична: 150 - 200 ºС; стадия (17) эндотермична: 400 – 450 ºС. Следует, однако, указать, что в данном термохимическом цикле, равно как и в других разрабатываемых циклах, приходится сталкиваться с многими трудностями технического характера, усложняющими на сегодня практическую реализацию этих вариантов в широких масштабах. По мнению специалистов, значительно ближе к осуществлению варианты термоэлектрохимического разложения воды, комбинирующего термохимические циклы с электрохимическими. Примером может служить сернокислотный цикл, основанный на том, что потенциал окисления сернистой кислоты до серной (0,18 В) существенно ниже потенциала «окисления» воды (1,3 В):

Н2SОз + SОз + 3 Н2О → 2H2SО4 + 2Н2 (18)

2SО4 → 2Н2О + 2Н2, + SO2 + О2 , (19)

где стадия (19) - эндотермическая реакция при 800 – 900 ºС и давлении до 10 атм, а стадия (18) - обычный электролиз водного раствора сернистой кислоты, протекающий при нормальной температуре [3, 4].

Из всего сказанного следует, что у водородной энергетики при условии ее дальнейшего совершенствования есть великолепный шанс внести ощутимый вклад в энергетическую систему мира [19 - 22].


Глава 2. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ ВОДОРОДНОЙ ЭНЕРГЕТИКИ (ДЛЯ УЧАЩИХСЯ СРЕДНЕЙ ШКОЛЫ)

Введение в проблему водородной энергетики для учащихся 9 классов на первом этапе возможно в виде как приведенных ниже выполненных самим учителем докладов, так и небольших сообщений, подготовленных самими учениками [23-24].Первое вводное сообщение выполняется учителем:

 

2.1 Сообщение 1. Суть водородной энергетики

Водородная энергетика включает следующие основные направления:

Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды;

технологии хранения, транспортировки и использования водорода в энергетике, промышленности, на транспорте.

Назначение, основные функциональные показатели

Водородная технология позволит остановить прогрессирующий рост загрязнения окружающей среды, исключив или принципиально сократив эмиссию токсикоагентов в тропосферу, в том числе, приземный слой атмосферы.

При получении больших объемов водорода из метана и серосодержащих природных газов может быть использована плазменно-мембранная технология удельной производительностью более чем в 100 раз выше по сравнению с традиционной. Удельные энергозатраты на производство 1 м3 водорода оказываются ниже реализованных в традиционной технологии в 2-3 раза (около I кВт/ч).

Производство водорода из воды возможно на новом типе электролизеров на базе катионопроводящей мембраны МФ-4СК, выпускаемой в России и обеспечивающей получение водорода более высокой чистоты с удельными энергозатратами в 1,5 меньшими, чем у традиционных систем. Удельная производительность аппаратов в 10 раз выше, чем у предыдущего поколения.

Область применения

Водородная технология используется для автономного обеспечения различных видов наземного транспорта и жидководородных силовых установок для авиации, стационарных энергосистем с водородным аккумулированием энергии (ветровые, солнечные и другие виды энергоустройств).

Применение водорода в химии, газо- и нефтехимии, производстве минеральных удобрений, биотехнологии, металлургии и т.д. позволит отказаться от традиционной организации процесса, повысить его качество и экономичность при ликвидации полного или основного выброса загрязняющих веществ в атмосферу.

Основания для выбора

Технология даст возможность крупномасштабно получать дешевый водород в качестве ценного сырья и реагента при производстве удобрений, метанола, а также в процессах переработки нефти. Ресурсы сырья практически неограниченны. Водород является экологически чистым энергоносителем и его применение в энергетике, промышленности и на транспорте окажет положительное влияние на состояние окружающей среды.

Состояние и тенденция развития

В настоящее время в России создан ряд демонстрационных установок, реализующих новые высокоэффективные и технологии получения и использования водорода из метана, природных серосодержащих газов с помощью плазменно-мембранной технологии. При этом исключаются катализаторы и традиционные жидкостные системы газораспределения. Оно осуществляется посредством мембранных аппаратов. Существующие в мире системы имеют вместо этой стадии громоздкий термокаталитический процесс, экологически некорректный, с более высокими энергозатратами (в 2-3 раза) и низкой удельной производительностью.

В настоящее время успешно завершаются исследования и разработки на уровне мощности 200 кВт на площадке ГНЦ "Курчатовский институт" и требуется переход к опытно-промышленной стадии на уровне мощности и производительности 10 м3 /ч. Предлагаемая технология не имеет мировых аналогов, к ней проявляет интерес ряд ведущих зарубежных фирм.

Для высокоэффективных электролизеров на основе на основе катионопроводящей мембраны МФ-4СК в настоящее время завершен цикл НИОКР и создано производство электролизеров с улучшенными показателями на базе российской технологии. Типоразмерный ряд доведен до производительности 20 м3 /ч и необходим завершающий этап по созданию 100 м3 /ч электролизера. Уровень лучших зарубежных разработок 50 м3 /ч на базе мембраны «Nation» по удельным характеристикам близок к основным параметрам, указанным выше [30, 11].

На базе той же отечественной мембраны в России созданы электрохимические генераторы 10 – 20 кВт, использующие водородо-воздушную смесь и имеющие КПД до 75%, при этом системы эмитируют только чистую воду, токсичные компоненты выброса отсутствуют полностью.

 

2.2 Сообщение 2. Выполняется учениками, на основе материалов, предоставленных учителем

Если в конце прошлого века самая распространенная сейчас проблема – энергетическая – играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 30 миллионов миллиардов киловатт-часов! Гигантские цифры, небывалые темпы роста! И все равно энергии будет мало, потребности в ней растут еще быстрее.

Уровень материальной, а, в конечном счете, и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: