Xreferat.com » Рефераты по химии » Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода"

Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода"

и людей становится все больше.

Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, который пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы – возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды – потребовали нового подхода к энергетике.

Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на невозобновляемых ресурсах, структура ее изменится. Должно сократиться использование нефти. Существенно возрастает производство электроэнергии на атомных электростанциях. Начнется использование пока еще нетронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибастузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

Но, к сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, а израсходованы они будут за сотни. Сегодня в море стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. Что же произойдет тогда, когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Решение этой задачи исследователи ищут на разных путях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии - энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, солнца. Много внимания уделяется развитию атомной энергетики, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии [31].

 

2.3 Сообщение 3. Выполняется учениками, на основе материалов, предоставленных учителем

 

Энергетические потребности, ресурсы и возможности

Человек с момента своего появления нуждался в энергетических ресурсах. На раннем этапе развития он удовлетворял эту потребность через пищу. Но с развитием человечества росли его энергетические потребности и расширялись возможности их удовлетворения. На первых этапах развития цивилизации использовались первичные природные энергетические ресурсы - древесина, затем ископаемый уголь. Постепенно начинает использоваться энергия ветра и воды [13]. Примитивные ветряные двигатели (ветряные мельницы) появились еще 2 тысячи лет назад. Природный битум начал использоваться 1 тысячу лет назад. Первые нефтяные скважины появились в XVII веке, а в середине XIX века началась промышленная добыча нефти и газа. В эпоху индустриализации потребность в энергетических ресурсах резко увеличивается, но расширяются и возможности человечества: началось производство электроэнергии с использованием гидроресурсов, энергии Солнца и атомной энергии. Использование энергетических ресурсов во все времена ограничивалось запасами природных энергоресурсов, возможностями человека извлекать энергию из этих энергоресурсов и последствиями их извлечения и использования.

 

2.4 Сообщение 4. Выполняется учителем

 

Глобальные экологические проблемы энергетики

Последствия влияния энергетики на экологию Земли носит глобальный характер. Воздействие энергетики на окружающую среду разнообразно и определяется видом энергоресурсов и типом энергоустановок. Приблизительно 1/4 всех потребляемых энергоресурсов приходится на долю электроэнергетики. Остальные 3/4 приходятся на промышленное и бытовое тепло, на транспорт, металлургические и химические процессы. Ежегодное потребление энергии в мире приближается к 10 млрд. т условного топлива, а к 2000 году оно достигнет, по прогнозам экспертов, 18-23 млрд. т. Теплоэнергетика в основном твердое топливо. Самое распространенное твердое топливо нашей планеты - уголь. И с экологической и с экономической точки зрения метод прямого сжигания угля для получения электроэнергии не лучший способ использования твердого топлива, при сжигании жидкого топлива с дымовыми газами в атмосферу воздуха поступают сернистые ангидриды, оксиды азота, окись и двуокись углерода, газообразные и твердые продукты неполного сгорания топлива, соединения ванадия, соли натрия, и др. С точки зрения экологии жидкое топливо менее вредно, чем уголь. Если уровень загрязнения атмосферы при использовании угля принять за 1, то сжигание мазута даст 0,6, а использование природного газа снижает эту величину до 0,2.

Парниковый эффект. Повышение концентрации углекислого газа в атмосфере вызывает так называемый парниковый эффект, который получил название по аналогии с перегревом растении в парнике. Роль пленки в атмосфере выполняет углекислый газ. В последние годы стала известна подобная роль и некоторых других газов (CH4 и N2O). Количество метана увеличивается ежегодно на 1%, углекислого газа - на 0,4%, закиси азота - на 0,2%. Считается, что углекислый газ ответственен за половину парникового эффекта.

Загрязнение атмосферы. Негативное влияние энергетики на атмосферу сказывается в виде твердых частиц, аэрозолей и химических загрязнений. Особое значение имеют химические загрязнения. Главным из них считается сернистый газ, выделяющийся при сжигании угля, сланцев, нефти, в которых содержатся примеси серы. Некоторые виды угля с высоким содержанием серы дают до 1 т сернистого газа, па К) г сгоревшего угля. Сейчас вся атмосфера земного шара загрязнена сернистым газом. Идет окисление до серного ангидрида, а последний вместе с дождем выпадает на землю в виде серной кислоты. Эти осадки называют - кислотными дождями. То же самое происходит и после поглощения дождем диоксида, азота - образуется азотная кислота [14].Сегодня глобальная среднегодовая потребность в энергии составляет ~8 трлн. Ватт. Иными словами для обеспечения нужд одного жителя Земли нужно 12 человек обслуживающего персонала.Если наш образ жизни, будет и дальше так развиваться, как сейчас, то в будущем потребность в энергии станет громадной. Если производство продовольствия будет идти в ногу с ростом населения, то к 2010 г. производство азотных удобрений должно увеличиться в 100 раз. Одно лишь это потребует около 20% объёма ныне производимой энергии. Опреснённая вода, которая часто рассматривается как неотъемлемая часть будущего, для своего получения требует громадных затрат энергии.

Среднегодовое потребление энергии увеличивается на 5,7%. Если этот темп сохранится, то к 2010 г. расход энергии по сравнению с 1980 г. увеличится в 4,5 раза. Основным источником получения энергии в мире дающим 97% её количества является ископаемое топливо, в том числе 38% составляет уголь, 19%-природньгй газ и 10% - нефть. 2% электроэнергии вырабатывается на ГЭС, а другие источники, такие как ядерный распад, древесина и прочие вырабатывают 1% энергии [15, 32] (рис. 1).

Нефти хватит еще приблизительно на 80 лет. Все запасы нефти разведаны. Разрабатываемые сейчас новые месторождения в Северном море обладают ограниченными запасами. Эти запасы недостаточны для того, чтобы обеспечить предполагаемый рост потребления энергии в Западной Европе, который удваивается каждые 8-10 лет. 2/3 добываемых запасов сосредоточены в Персидском заливе. Остальные находятся в России, Северной Америке и Африке. Нефтяная проблема еще больше усложняется в результате низкоэффективных способов добычи нефти. Местами из недр земли берется только 30-35% нефти. Поскольку цены на нее растут, экономически эффективной может стать вторичная добыча, что позволит поднять на поверхность 40-45% нефти.

Запасы природного газа более ограничены. Они приблизительно равны запасам энергии оставшихся угольных месторождений. Около 1/5 всех запасов природного газа сосредоточено в Северной Америке, 1/3 в России.

Основным источником энергии ископаемого топлива является каменный уголь. Из всех мировых запасов угля 52% - сосредоточены в России, 20%- в США, 9%- в Китае, 8%- в Канаде, 5%- в Западной Европе, остальное -в Океании, Центральной и Южной Америке (рис. 2).

Рис.2. Распределение залежей мировых запасов угля по странам


Около 97% угля можно извлечь только при помощи сооружения глубоких шахт. Хотя угля и много, он не является дешёвым источником энергии. Перевозки, труд, капиталовложения при строительстве новых глубоких шахт, контроль за загрязнением воды и воздуха - всё это увеличивает стоимость угля. Все сказанное выше достаточно для того, чтобы убедиться в необходимости перехода человечества на новые виды энергии, не связанные со сжиганием традиционного топлива. Для удобства рассмотрения вопросов поиска новых источников энергии кажется целесообразным, прежде всего, все существующие на земном шаре энергетические системы, использование которых осуществляется или потенциально может осуществляться человеком, разделить условно на два типа:

ü     системы, основанные на возобновляемых источниках энергии;

ü     системы, основанные на невозобновляемых источниках.

Каждый тип, в свою очередь, можно подразделить на несколько видов энергетических систем.

 

Таблица 2 Энергетические системы, пригодные для использования человеком

№ вида Энергетические системы

Тип I (основаны на возобновляемых источниках энергии)

1. На: гравитационных силах; молекулярном движении; движении приливов и волн; движении воздуха; геотермальных силах
2. фотосинтезе растении; жизнедеятельности организма
3. фотохимических, фотоэлектрических и термоэлектрических процессах

Тип II (основаны на возобновляемых источниках энергии)

1. На: сжигании радиационного топлива
2. внутриядерных процессах
3. биохимическом преобразовании энергии
4. водородном топливе

Системы, относящиеся к первому виду, малоперспективны, несмотря на их экологическую чистоту. В начале века, по имеющимся оценкам, они смогут удовлетворить мировые потребности лишь на 5 - 10% [14, 29].

 

2.5 Сообщение 5. Выполняется учениками, на основе материалов, предоставленных учителем

 

 Влияние водородной энергетики на окружающую среду

При рассмотрении основных принципов водородной энергетики и ее влияния на окружающую среду, нельзя ограничиваться лишь загрязнением воздуха, так как это не единственный тип загрязнения. При сравнении различных энергетических источников следует обсудить и другие аспекты. Под этим можно подразумевать эффективность источников энергии, поэтому важно сопоставить водородную энергетику с другими энергетическими системами, такими как уголь - синтетическое топливо, атомная энергия - водород, атомная энергия - электричество и др.С точки зрения охраны окружающей среды варианты водородной энергетики оцениваются выше старых энергетических систем, использующих ископаемые топлива. Заслуживает внимания тот факт, что, хотя энергетическая система солнечная система - водород самая безопасная по отношению к окружающей среде, все же система солнечная энергия - электричество будет эффективнее, так как в ней используется меньшее количество материалов. Предполагается что система солнечная система - водород будет работать в сочетании с фотогальваническими элементами, в которых расходуется большое количество кремния. Поэтому, если система море-солнце или с ветровой энергией, то влияние на окружающую среду будет меньше, и энергетическая система солнечная система - водород будет более приемлемой, чем система солнечная система - электричество [13].


2.6 Сообщение 6. Выполняется учениками

 Дополнительные сведения о применении водорода в бытовых целях

Вся энергия, предназначенная для бытовых целей, может быть получена из водорода (освещение, отопление и приготовление пищи). Однако это не самый оптимальный путь применения водорода.

Освещение, отопление и приготовление пищи. Для освещения не обязательно применять электричество, можно воспользоваться «холодным светом», получаемым при взаимодействии водорода с фосфором. Для приготовления пищи, отопления помещений может быть использован специальный керамический материал. Однако отопление помещений лучше осуществлять с помощью электрических насосов.

Электричество в доме. По-видимому, при внедрении водородной энергетики уменьшится потребление электроэнергии в жилых домах. Снизятся затраты на работу различных электронных устройств. Однако для снабжения водородом зданий необходимо полностью переоборудовать трубопроводы, горелки и большую часть другого оборудования [12].

Переработка сточных вод. Обычно сточные воды должны пройти по трубопроводам несколько, прежде чем попадут на специализированные станции по их переработке. Имеются ряд способов переработки мусора и сточных вод с применением метана, который затем может быть использован при вторичном производстве энергии. При подаче по трубопроводу кислорода сточные воды могут быть подвергнуты аэробной обработке: при температуре около 100 °С и взаимодействии с чистым кислородом, образуется СО2 [1].

 

2.7 Сообщение 7. Выполняется учителем при заключении темы

 

Пymu развития водородной энергетики

Следует сразу установить, что преимущества водородной энергетики могут быть достигнуты только путем постадийного внедрения этой энергетики (исследование, проектирование, создание опытной установки, небольшая проверка, более крупная проверка и, наконец, полный переход на водородную энергетику). На первой стадии в качестве источника для получения водорода можно использовать уголь, который при нагревании с водой образует смесь СО и Н2; СО затем будет окислом до СО2 и выброшен в атмосферу, а Н2 доставят по трубопроводу па ближайшую установку. Здесь он может быть использован для получения электричества.

Во второй стадии в качестве источника энергии для получения водорода может быть использована ядерная установка; образующийся водород затем будет доставляться в город и применяться для получения электроэнергии или для работы части транспорта.

На третьей стадии может быть использован маленький город (например, с населением 10 000), где будет построена станция для сбора солнечной энергии. Если это гористая местность, можно установить экспериментальные крупные аэрогенераторы.

Важной является четвертая стадия освоения, на осуществление которой необходимы суммы, исчисляемые миллиардами. На этой стадии следует перевести часть энергетики на водород, например, жилищно-коммунальное хозяйство, транспорт, промышленность [8].

Экологическая "чистота" водорода не вызывает сомнений, если учесть, что практически единственным, продуктом его сгорания является вода и что в этом случае полностью отсутствуют характерные для углеводородных топлив загрязняющие атмосферу соединения типа диоксидов углерода и серы, а также паров углеводородов. Кроме того, водород - это и достаточно калорийное топливо. По теплотам сгорания (34 ккал/г) он намного превосходит такие классические

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: