Xreferat.com » Рефераты по химии » Основы термодинамики

Основы термодинамики

border="0" />?

1. Основы термодинамики Основы термодинамики

2. Основы термодинамики Основы термодинамики

3. Основы термодинамики Основы термодинамики

4. Основы термодинамики Основы термодинамикиОсновы термодинамики

5. Основы термодинамики Основы термодинамикиОсновы термодинамики

6. Основы термодинамики Основы термодинамики

7. Основы термодинамики Основы термодинамики

8. Основы термодинамики Основы термодинамики

9. Основы термодинамики Основы термодинамики

По закону Гесса: Основы термодинамики

Теплоты образования химических соединений приводятся в справочниках физико-химических величин и для вычисления теплового эффекта химических реакций необходимо из суммы теплот образования продуктов реакции вычесть сумму теплот образования исходных веществ: Основы термодинамики

Заметим, что в дальнейшем изложении мы введем еще ряд функций состояния и для них закон Гесса также справедлив.

3.6. Зависимость теплового эффекта химической реакции от температуры.

Если Hi мольная энтальпия химического соединения, то Основы термодинамики. Очевидно, что для некоторой химической реакции Основы термодинамики и Основы термодинамики.

Дифференцирование по температуре, разделение переменных и интегрирование в интервале от Т1 до Т2 дают (р = const):

Основы термодинамики Основы термодинамики

Основы термодинамики

и Основы термодинамики уравнение Кирхгоффа

Аналогично для ΔU и Cv.

Глава 4. Второй закон.

4.1. Определение.

Каждая термодинамическая система обладает функцией состояния -энтропией. Энтропия процесса вычисляется следующим образом. Система переводится из начального состояния в соответствующее конечное состояние через последовательность состояний равновесия, вычисляются все подводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т источника теплоты и все полученные таким образом значения суммируются: Основы термодинамики и Основы термодинамики.

При реальных (неидеальных) процессах энтропия замкнутой (изолированной) системы возрастает Основы термодинамики, т.е. Основы термодинамики.

Энтропия – способность к превращению (Клаузиус)

По I закону Основы термодинамики и для идеального газа

Основы термодинамики и Основы термодинамики.

Основы термодинамики, т.е. для идеального газа Основы термодинамики обладает свойствами полного дифференциала, т.е. S есть функция состояния.

Распространение Основы термодинамики на все системы и есть II закон

4.2. Другие формулировки

Тепло не может само по себе перейти от системы с меньшей температурой к системе с большей температурой (Клаузиус).

Невозможно получать работу, только охлаждая отдельное тело ниже температуры самой холодной части окружающей среды (Кельвин).

4.3. Обратимые и необратимые процессы.

Процесс называется равновесным, если в прямом и обратном направлении проходит через одни и те же состояния бесконечно близкие к равновесию. Работа равновесного процесса имеет максимальную величину по сравнению с неравновесными процессами и называется максимальной работой.

Если равновесный процесс протекает в прямом, а затем в обратном направлении так, что не только система, но и окружающая среда возвращается в исходное состояние и в результате процесса не остается никаких изменений во всех участвовавших в процессе телах, то процесс называется обратимым.

Обратимый процесс – такая же абстракция, что и идеальный газ.

Крайние случаи необратимых процессов: переход энергии от горячего тела к холодному в форме теплоты при конечной разнице температур, переход механической работы в теплоту при трении, расширение газа в пустоту, диффузия, взрывные процессы, растворение в ненасыщенном растворе.

Эти необратимые процессы идут самопроизвольно без воздействия извне и приближают систему к равновесию.

4.4. Изменение энтропии в различных процессах.

Основы термодинамики, причем знак = относится к обратимым процессам, а знак > к необратимым.

Если требуется вычислить энтропию необратимого процесса необходимо провести обратимый процесс между теми же самыми конечным и начальным состоянием (используем тот факт, что энтропия – функция состояния).

а) Изотермический процесс:

Основы термодинамики, Q – часто это скрытая теплота фазовых переходов.

б) Изменение температуры при Основы термодинамикиОсновы термодинамики:

Основы термодинамикиОсновы термодинамики, следовательно Основы термодинамики, т.к. Основы термодинамики

Энтропия необратимого процесса: Основы термодинамики

Теплота конденсации при 298 К равна – 10519 кал, Основы термодинамики

Ответ, очевидно, неверен, поскольку процесс необратимый. Проведем его обратимо: Основы термодинамикиОсновы термодинамики

(-9769 – теплота конденсации при 373 К)

Основы термодинамики

Заметим, что действительно Основы термодинамики меньше, чем Основы термодинамики.

4.5. Закон Джоуля

Основы термодинамики,

Основы термодинамики – это полный дифференциал, следовательно Основы термодинамики.

Основы термодинамики, Основы термодинамики

Основы термодинамики

Основы термодинамики.

Для идеального газа Основы термодинамики Основы термодинамики и Основы термодинамики,

Для любых систем Основы термодинамики,

Для газа Ван-дер-Ваальса Основы термодинамики и Основы термодинамики.

4.6. Постулат Планка. Абсолютная энтропия.

Зададимся вопросом, каково изменение энтропии некоего процесса, который протекает при температуре около абсолютного нуля. Например, имеем две кристаллические модификации металлического олова: низкотемпературную, α - Sn, и высокотемпературную – обычное белое олово, β – Sn. Они находятся в равновесии при 14 0С (287 К), теплота равновесного превращения 497 кал/моль, а энтропия его Основы термодинамики

Легко сообразить, чтобы дать ответ на поставленный вопрос, необходимо взять β – Sn при 0 К, нагреть до температуры 14 0С, равновесно превратить β – Sn в α – Sn, и затем охладить α – Sn до абсолютного нуля, тогда суммарное изменение энтропии будет:

Основы термодинамики,

т.е. изменение энтропии в пределах ошибок опыта равно нулю, а отсюда следует, что энтропии α – Sn и β – Sn одинаковы.

Исходя из многочисленных подобных экспериментов (мы их обсудим позднее в гл.16), Планк выдвинул постулат: энтропия идеального кристаллического тела при абсолютном нуле равна нулю.

Абсолютные энтропии веществ, измеренные экспериментально или вычисленные теоретически, приводятся в справочниках термодинамических величин (где и теплоты образования).

Глава 6. Равновесие в однокомпонентных гетерогенных системах.

Уравнение Клапейрона – Клаузиуса

6.1. Определения.

Фазой называется совокупность частей системы, обладающих одинаковыми термодинамическими свойствами. Система, состоящая из одной фазы, называется гомогенной, из двух или более – гетерогенной. Фаза более общее понятие, чем индивидуальное вещество. Система может состоять из одного вещества, но быть гетерогенной (вещество находится в системе в виде разных агрегатных состояний или кристаллических модификаций). Система может быть гомогенной, но содержать несколько химических соединений, пример этого – растворы.

Назовем составляющими веществами системы такие химические соединения, которые могут быть выделены из системы, и существовать отдельно от нее. Назовем независимыми компонентами такие составляющие вещества, концентрации которых могут изменяться независимо. Если в системе не протекают химические реакции, то все вещества, составляющие систему, являются независимыми компонентами.

Но в случае фактического протекания химических реакций концентрации только части веществ могут изменяться независимо, поэтому число независимых компонентов равно числу составляющих веществ минус число химических реакций, которые фактически протекают в системе.

6.2. Условия равновесия и направление самопроизвольного процесса в однокомпонентной гетерогенной системе.

Пусть гетерогенная однокомпонентная система имеет две фазы (΄) и (˝), а мольные энергии Гиббса компонента в каждой из фаз G΄ и G˝ соответственно. Пусть давление и температура постоянны, а изменение чисел молей компонента в фазе (ґ) равноОсновы термодинамики, в фазе (ґ) Основы термодинамики, тогда изменение энергии Гиббса системы равно: Основы термодинамики.

Если система закрытая, то Основы термодинамики, и Основы термодинамики.

При равновесии Основы термодинамики, а это возможно, когда Основы термодинамики, т.е. при равновесии мольные энергии Гиббса компонента в фазах равны.

Самопроизвольный процесс в системе может протекать только в сторону уменьшения энергии Гиббса системы, т.е. Основы термодинамики. Положим, для определенности, что Основы термодинамики тогда Основы термодинамики, если же. Это значит, что компонент самопроизвольно переходит из той фазы, где его мольная энергия Гиббса больше, в ту фазу, где его мольная энергия Гиббса меньше.

Изменим давление и температуру на бесконечно малые величины dT и dp, тогда очевидно, что если система остается равновесной и гетерогенной Основы термодинамики следовательно, и Основы термодинамики.

6.3. Уравнение Клапейрона-Клаузиуса.

Очевидно, что Основы термодинамики, где V’,V’’,S’,S” мольные объемы и мольные энтропии компонента в фазах (‘) и (“). Из условий равновесия Основы термодинамики или Основы термодинамики - изменение энтропии и объема при переходе 1 моля компонента из фазы (‘) в фазу (“), т.е. это мольные изменения энтропии и объема фазового превращения.

Учитывая, что фазовое превращение рассматривалось как равновесное и изотермическое, то Основы термодинамики - теплота фазового превращения и окончательно: Основы термодинамики уравнение Клапейрона–Клаузиуса.

Заметим, что в уравнении Клапейрона ΔH и ΔV относятся к одноименным процессам и на одно и тоже количество вещества.

6.4. Фазовое равновесие в конденсированных системах.

Конденсированной системой называется такая, в которой не имеется в наличии газообразная фаза, а только твердые или жидкие или те и другие вместе.

Наиболее интересным является равновесие кристалл ↔ жидкость. Поскольку теплота плавления всегда положительна, знак производной Основы термодинамики будет зависеть от знака ∆V. Для большинства веществ ∆V>0 (Vж > Vкр), и производная положительна, т.е. температура лавления будет расти с ростом давления. Однако у некоторых веществ (H2O, Ga, Bi, Sb, Ge, Si и др.) при плавлении происходит уменьшение объема, Vж < Vкр, и температура плавления понижается с повышением давления. Так для воды Основы термодинамики

Если предположить, что для конденсированных систем ∆H и ∆V не зависят ни от давления, ни от температуры, то уравнение Клапейрона-Клаузиуса легко интегрируется Основы термодинамики.

Интересным является рассмотрение равновесия С (графит) →С (алмаз). Использование справочных данных для энтальпий образования и энтропий графита и алмаза дает для этого превращения Основы термодинамики, откуда видно, что при любых температурах Основы термодинамики. Но поскольку Основы термодинамики, то с увеличением давления ∆rG должна уменьшаться и при данной температуре графит и алмаз находятся в равновесии, тогда когда ∆rG = 0. Предположив, что ∆V не зависит от давления, получим после интегрирования.

Основы термодинамикиоткуда Основы термодинамики.

Подставив численные значения ∆rG0 и ∆V получим Р (атм) = 9448 + 17,42 Т

При 300 К Р=14670 атм.

1000 К Р=26870 атм.

1500 К Р=35580 атм., т.е. равновесные давления имеют порядок десятков тысяч атм.

Далее Основы термодинамики, и мы видим, что при высоком давлении поменялся даже знак теплового эффекта. Действительно, возьмем уравнение Гиббса-Гельмгольца:

Основы термодинамики и возьмем производную по давлению:

Основы термодинамики.

После интегрирования и ряда упрощений имеем:

Основы термодинамики.

6.5. Интегрирование уравнения Клапейрона-Клаузиуса для процесса парообразования.

Переход жидкости в пар называют испарением, обратный процесс конденсацией. Испарение твердых тел называют возгонкой или сублимацией, обратный – кристаллизацией. Пар, который находится в равновесии с конденсированной фазой, называется насыщенным паром.

Поскольку теплота парообразования положительна, а мольный объем пара больше мольного объема конденсированной фазы, это значит, что производная в уравнении Клапейрона-Клаузиуса Основы термодинамики т.е. с ростом температуры давление насыщенного пара увеличивается.

При температурах, далеких от критических, мольный объем пара много больше мольного объема конденсированной фазы, поэтому последним можно пренебречь, а если в этой области температур насыщенный пар подчиняется уравнению состояния идеального газа, то: Основы термодинамики, и уравнение Клапейрона-Клаузиуса можно представить в виде: Основы термодинамики.

В нешироком интервале температур теплоту испарения можно считать постоянной и взятие определенного интеграла дает: Основы термодинамики.

Таким образом, если известна ∆v H, то, зная давление насыщенного пара вещества при одной температуре, можно рассчитать давление насыщенного пара при другой температуре. С другой стороны, определив давление насыщенного пара при двух (по крайней мере) температурах, можно рассчитать теплоту испарения.

Взятие неопределенного интеграла дает (при ∆v H = const) Основы термодинамикиили Основы термодинамики, где А и В – константы, характерные для данного вещества. Это уравнение, линейное в координатах ln p – 1/T, дает прямую линию в значительном интервале температур. Более точным является уравнение Антуана: Основы термодинамики, где А, В, С – константы.

Практически полезным может оказаться правило Трутона: энтропия испарения вещества в нормальной точке кипения (при 1 атм.) равна приблизительно 90 Дж/моль*К. Тогда в уравнение Клапейрона-Клаузиуса входит только одна константа Тнтк – температура нормальной точки кипения:

Основы термодинамики.

По этому уравнению удобно рассчитывать температуру перегонки органических соединений под пониженным давлением. Однако следует отметить, что правило Трутона соблюдается только для «нормальных» жидкостей, т.е. таких молекулы которых не ассоциированы в жидкой фазе (как у воды за счет водородных связей), а также, если пары не состоят из полимерных или диссоциированных молекул.

Для уксусной кислоты прямые определения теплоты испарения в калориметре при температуре кипения СН3СООН равной 391К дает величину 406 Дж/г. С другой стороны при 363 К давление пара 293 торр, при 391К и 760 торр. Заменив производную в уравнении Клапейрона-Клаузиуса отношением конечных приращений имеем:

Основы термодинамики.

Мольная масса СН3СООН равна 60, тогда из калориметрических данных:

Основы термодинамикиОсновы термодинамики.

Расхождение между этими двумя значениями связано с тем, что для получения одного моля пара необходимо испарить больше, чем 60 г СН3СООН, следовательно, мольная масса пара СН3СООН равна:

Основы термодинамики, отсюда легко сообразить, что пары уксусной кислоты в этом температурном интервале димеризованы примерно на 2/3.

Насыщенный пар обладает еще рядом интересных свойств. Рассмотрим некоторые из них.

Пусть в гетерогенной системе при температуре Т находится 1 моль вещества, причем в равновесии находятся m молей пара и 1-m молей жидкой фазы. Пусть теплоемкость пара Сп, жидкости Сж, изменяем температуру от Т до T+dT, при этом испаряется масса жидкости dm, тогда затраты тепла dQ можно представить в виде соотношения:

Основы термодинамики.

Разделим правую и левую части на Т, имеем:

Основы термодинамики.

Следовательно, справедливо: Основы термодинамики,

после дифференцирования имеем Основы термодинамики.

По уравнению Кирхгоффа Основы термодинамики и Основы термодинамики,

т.е. теплоемкость насыщенного пара не равна изобарной теплоемкости того же газообразного вещества.

Следует также иметь в виду, что введение постороннего (инертного) газа изменяет давление насыщенного пара при неизменной температуре, даже если газ не растворяется в жидкости. Это происходит вследствие влияния общего давления на свойства конденсированной фазы (возрастает ее мольная энергия Гиббса). Действительно, при T=const:

Основы термодинамики, где Рг – давление постороннего газа, Рж давление насыщенного пара, Vж и Vп - мольные объемы жидкости и пара. Поскольку по условию равновесия dGж =dGп, то: Основы термодинамики.

Взятие интеграла от Рг = 0 до Рг приводит к уравнению: Основы термодинамики

Поскольку дробь Vж/Vn невелика (для воды при 373 К она равна 5,9∙10-4), то влияние постороннего газа сказывается только при высоких давлениях.

Например, для воды под давлением водорода при 373 К

Основы термодинамики


25 200 600 1000

Основы термодинамики

Эксп. 1,018 1,19 1,66 2,35

Расч. 1,015 1,12 1,35 1,802

Глава 7. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

7.1. Определения.

Раствором называется гомогенная, молекулярно-дисперсная система, состав которой можно изменять непрерывно в некотором конечном или бесконечном интервале.

По агрегатному состоянию растворы разделяются на твердые, жидкие и газообразные. Если растворитель и растворенное вещество имеют разные агрегатные состояния, то растворителем рассматривают обычно то вещество, агрегатное состояние которого совпадает с агрегатным состоянием раствора. Если же компоненты раствора и раствор имеют одинаковое агрегатное состояние, то за растворитель считают то вещество, которого больше, хотя для термодинамики это безразлично.

Состав раствора измеряется его концентрацией. Существуют следующие основные определения концентрации:

мольная доля (х) – число молей вещества в 1 моле раствора;

моляльность (m) – число молей растворенного вещества в 1000 г растворителя;

молярность (с) – число молей растворенного вещества в 1 л раствора;

массовое содержание (р) – число грамм растворенного вещества в 100 г раствора.

В основном мы будем пользоваться мольной долей. Очевидно, что

Основы термодинамики

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: