Xreferat.com » Рефераты по химии » Транспортные процессы и гетеропереходы в твердофазных электрохимических системах

Транспортные процессы и гетеропереходы в твердофазных электрохимических системах

На правах рукописи

ГОФФМАН ВЛАДИМИР ГЕОРГИЕВИЧ


ТРАНСПОРТНЫЕ ПРОЦЕССЫ И ГЕТЕРОПЕРЕХОДЫ

В ТВЕРДОФАЗНЫХ ЭЛЕКТРОХИМИЧЕСКИХ СИСТЕМАХ

С БЫСТРЫМ ИОННЫМ ПЕРЕНОСОМ

Автореферат

диссертации на соискание ученой степени

доктора химических наук


2000

Актуальность темы диссертации


Суперионные проводники - это твердые тела, обладающие свойством быстрого ионного переноса, для которых характерна высокая ионная проводимость достигающая значений 0.1...100 См/м. Соответственно коэффициенты диффузии подвижных ионов составляют 10»12...10'8 м2/с. Следует отметить две фундаментальные особенности суперионных проводников, отличающих их от жидких электролитов. Во-первых - перенос заряда осуществляется только одним сортом ионов, все остальные ионы формируют жесткий каркас кристаллической решетки, и их перенос может осуществляться по механизмам точечных дефектов. Во-вторых, суперионные проводники одновременно являются электронными полупроводниками с широкой запрещенной зоной и наличием электронных типов носителей заряда: дырок и электронов. Концентрация последних зависит от наличия местных донорных и акцепторных уровней. Из этого следует, что явление переноса как в объеме суперионного проводника, так и тем более на гетеропереходах в контакте с электролитами зависят от поведения электронных и ионных подсистем и их взаимного влияния. Исследования стационарных и переходных электрохимических процессов в конкретных системах с использованием поликристаллических материалов активно ведутся во всех промышленно развитых странах с целью установления основополагающих закономерностей бурно развивающейся новой отрасли науки - ионики твердого тела, и использования последних в создании преобразователей энергии и информации нового поколения.

Однако до настоящего времени нет работ электрохимического плана, выполненных на монокристаллах. Их отсутствие не позволяет скорректировать отличающиеся на порядки удельные характеристики, полученные исследователями на порошкообразных образцах, и отдать предпочтение наиболее реальным моделям и механизмам, объясняющим явления возникновения суперионного эффекта и функционирования электрохимических систем на их основе.

Поэтому научная работа, в которой поставлены задачи получения монокристаллов в системах на основе AgJ и определения ряда фундаментальных параметров, и их взаимного влияния на транспортные свойства и контактные явления, протекающие на границе с электродами различной природы, является своевременной и важной. Настоящая работа выполнена в лаборатории твердых электролитов ИНХП АН СССР (Черноголовка) и лаборатории «Ионика твердого тела» СГТУ (г. Саратов).

Работы велись в соответствии с координационными планами научных советов РАН «Физическая химия ионных расплавов и твердых электролитов», «Электрохимия и коррозия», а также на хоздоговорной основе в соответствии с тематическими планами производственных объединений «Позитрон» (Минэлектронпром), «Маяк» (Минэлектротехпром), «Сигнал» МАП, Института Общей физики АН СССР и по договорам о творческом сотрудничестве с институтами ФТИ им. А.Ф. Иоффе АН, МГУ, Латвийским университетом.

Цель работы заключается в установлении фундаментальных закономерностей транспортных свойств в твердофазных электрохимических системах, включающих суперионные монокристаллы с униполярной проводимостью по ионам серебра.

Поставленная цель достигается решением следующих задач:

• Поиск и исследование систем с целью разработки технологии получения чистых и совершенных монокристаллов на основе AgJ.

• Экспериментальные, исследования термодинамических, электрохимических, оптических свойств.

• Экспериментальные и теоретические исследования особенностей кинетики переноса основных и не основных носителей заряда.

• Экспериментальные и теоретические исследования кинетики аддитивного окрашивания суперионных монокристаллов в парах иода.

Экспериментальное и теоретическое исследование гетеропереходов с чистыми и легированными суперионными проводниками.


Научная новизна и основные защищаемые положения


Впервые поставлена и решена проблема комплексного анализа структурных, оптических, термодинамических, электрохимических свойств суперионных проводников в монокристаллическом состоянии и процессов, протекающих с их участием на гетеропереходах. При этом получены следующие новые научные результаты:

Исследована система MJ-AgJ-CH3COCH3, и на основании полученных результатов разработан оригинальный метод выращивания монокристаллов суперионных проводников Ag4RbJ5, Ag+KJs, AgJ высокой чистоты.

Проведены исследования фазовых переходов. Экспериментально доказано, что фазовый переход в Ag4RbJs при 208К относится к переходам 5 первого рода. Исследована доменная структура, возникающая при температуре ниже 208 К. Показано, что размер доменов фазе определяется температурой и не носит релаксационного характера. Обнаружено, что при фазовом переходе 122К скрытая теплота выделяется в два этапа.

Обнаружен и исследован эффект аддитивного окрашивания монокристаллов AgiRbJs в парах йода. Предложена и экспериментально доказана модель образования центров окраски при нормальных условиях.

Проведены исследования диффузии центров окраски в Ag4RbJ5. Обнаружено влияние аддитивного окрашивания на электронную проводимость.

Проведены исследования процессов диффузии меченых атомов (Ag и J) на монокристаллах AgtRbJs. Получены температурные зависимости коэффициентов диффузии.

Проведены исследования электрохимических закономерностей на гетеропереходах с монокристаллическим суперионным проводником Ag4RbJ5. Обнаружено, что параметры гетероперехода, описывающие кинетику не основных носителей, зависят от кристаллографического направления.

Проведено исследование методом потенциодинамической вольтамперометрии и импеданса монокристалла на границе с обратимыми, инертными и необратимыми электродами. Предложены эквивалентные схемы, удовлетворительно описывающие электрохимическое поведение процессов на гетеропереходах. Рассчитаны энергии активации отдельных стадий электрохимических процессов.

Установлена взаимосвязь структуры, оптических свойств с электрохимическими. Обнаружено влияние дефектности структуры на ионную и электронную составляющие проводимости в диапазоне ОС. температур и концентраций.

Положения работы, выносимые на защиту.

Проведенные экспериментальные и теоретические исследования позволяют вынести на защиту следующие основные научные положения и результаты.

Исследования системы MJ-AgJ-СНзСОСНз и способ получения монокристаллов А&ДЫ5, Ag4KJ5, AgJ.

Термодинамические и оптические характеристики фазовых переходов.

Модель образования центров окраски при воздействии иода на монокристаллы суперионика. Экспериментальное подтверждение предложенной модели. Кинетические характеристики центров окраски и их влияние на проводимость.

Экспериментальные результаты определения параметров гетеропереходов с йодом и йодными комплексами. Установленные закономерности кинетики и механизма электродных процессов, протекающие на гетеропереходах с участием основных носителей заряда.

Экспериментальные результаты определения энергии активации ионной и электронной составляющих проводимости монокристаллов.

Экспериментальные исследования процессов диффузии серебра-ПО, иода-131, центров окраски.

Взаимосвязь между структурными, оптическимии электрохимическими свойствами монокристаллов.

Практическая ценность работы заключается:

В разработке метода и технологии выращивания совершенных, высокой чистоты монокристаллов Ag4RbJ5, Ag4KJ5 из системы MJ-AgJ-СН3СОСН3. Разработанный метод позволяет получать образцы для проведения прецизионных измерений электрических, термодинамических, оптических и других характеристик и материалы высокого качества для изготовления твердотельных функциональных элементов электронной техники. Разработан «метод выращивания монокристаллов AgJ.

В проведении комплекса экспериментальных исследований термодинамических характеристик, характеристик, описывающих кинетику основных и не основных носителей заряда в суперионных кристаллах. Полученные результаты являются справочными и могут быть использованы при определении оптимальных критериев для конструирования преобразователей энергии и информации.

В разработке сенсора для определения концентрации йода в условиях 100% влажности и высокого радиационного поля.

В разработке технологии изготовления сверхъемких конденсаторов, позволившей получить следующие основные характеристики: 1) емкость до 100 Ф; 2) количество циклов заряд-разряд > 150000; 3) ток саморазряда при 398 К < 10 нА, при 298 К < 10 пА.

В разработке количественного метода определения AgJ в составах MJ-AgJ, который может быть использован для контроля соединений на основе AgJ.

В разработке алгоритмов и методов определения параметров сложных электрохимических эквивалентных схем.

Апробация работы


Материалы диссертационной работы докладывались на V Всесоюзном совещании по росту кристаллов, на VI, VII, VIII и XI Всесоюзных конференциях по физической химии ионных расплавов и твердых электролитов (Киев, 1976; Свердловск, 1979; Ленинград, 1983; Екатеринбург, 1992), на Международной конференции «Дефекты в диэлектрических кристаллах» (Рига, 1981), на VI Всесоюзной конференции по электрохимии (Москва, 1982), на III Всесоюзном семинаре «Ионика твердого тела» (Вильнюс, 1983), на семинарах в ИФТТ АН СССР (Черноголовка, 1984), в ФТИ им. А.Ф. Иоффе АН СССР (Ленинград, 1983), в ИНХП АН СССР (Черноголовка, 1984), на семинарах Секции Научного Совета АН СССР по физической химии ионных расплавов и твердых электролитов «Ионика твердого тела» в Риге (1981, 1982, 1984, 1985, 1986, 1988), Республиканской конференции «Физика твердого тела и новые области ее применения» (Караганда, 1986, 1990), III Всесоюзном совещании по химическим реактивам «Состояние и перспективы развития ассортимента химических реактивов для важнейших отраслей народного хозяйства и научных исследований» (Ашхабад, 1989), III Всесоюзном симпозиуме «Твердые электролиты и их практическое применение» (Минск, 1990), Conf. «Sensor Tekhno - 93S (St. -Petersburg, 1993), Всероссийской научно-технической конференции «Датчики и преобразователи информации систем измерения, контроля и управления» (Гурзуф, 1994), Всесоюзной конференции «Современные технологии в образовании и науке» (Саратов, 1998, 1999), 12th International conference on solid state ionics (Greece, 1999), 5-м международном совещании.

Основные положения диссертации изложены в 56 публикациях, наиболее важные из которых приведены в автореферате.

Объем и структура работы


Диссертационная работа состоит из введения, 7 глав, основных выводов и заключения. Изложена на 302 страницах машинописного текста, включая 129 рисунков и 29 таблиц. Список цитируемой литературы содержит 335 наименований.


Основное содержание работы


Во введении приводятся обоснование актуальности выбранной темы, цель и задачи работы, рассматриваются научная новизна и практическая ценность полученных результатов, дается содержание основных положений, выносимых на защиту.

В первой главе систематизированы и представлены наиболее характерные суперионные проводники. Рассмотрены теоретические основы метода исследования гетеропереходов с суперионными проводниками - метод импеданса, метод вольтамперометрии, методы измерения электронной и дырочной проводимостей. Критически разобраны известные методы синтеза и выращивания монокристаллов. Сделан вывод, что перспективной системой для выращивания чистых и совершенных монокристаллов Ag4RbJ5 может быть система MJ-AgJ-СН3СОСН3. Проведен анализ известных результатов исследования ионной проводимости, диффузии, термодинамических свойств суперионных проводников. Отмечено, что подавляющее число исследований выполнено на поликристаллических образцах, чистоту и фазовый состав которых в большинстве случаев не определяли. Глава завершается обсуждением основных направлений исследования и выбором объектов.

Во второй главе приведено описание методов исследований суперионных проводников, гетеропереходов. Приводятся результаты исследования систем для получения монокристаллов. Описан способ получения монокристаллов.

Для изучения системы и идентификации кристаллизующихся фаз измеряли температурные зависимости растворимости и плотности раствора (метод взвешивания кварцевого эталона в растворе). Для идентификации кристаллизующихся фаз были применены визуальный политермический анализ в малых объемах, рентгенофазовый анализ (ДРОН-2), дифференциально-термический и термовесовой анализы (дериватограф Q-1500D). Изучены: огранка кристаллов (гониометр ZRG3), плотность кристаллов (метод гидростатического взвешивания в толуоле). Для выращивания чистых кристаллов разработаны методы очистки AgJ и смеси RbJ-AgJ. Для определения чистоты и состава кристаллизующихся фаз разработаны методы определения AgJ и J2 в составах RbJ-AgJ.

Спектры поглощения изучали с помощью двухлучевого спектрометра «Specord UV-VIS» и спектрофотометра «СФ-16», тепловые эффекты измеряли дифференциальным сканирующим калориметром «DSC-III» и вакуумным адиабатическим калориметром. Для возбуждения люминесценции использовали импульсный лазер ЛГИ-21 (337 нм). Исследование вращения плоскости поляризации проводили с помощью спектрополяриметра, позволяющего определять угол с точностью 0,1°.

Эффективную концентрацию иода в кристаллах определяли методом экстрагирования (растворитель - четыреххлористый углерод).


Исследование процессов диффузии меченых атомов


Измерения активности исследуемых образцов и снятых слоев проводили с помощью одноканального пересчетного прибора ПС02-2еМ и унифицированного сцинтилляционного блока детектирования типа БДБСЗ-leM с кристаллом NaJ(Tl). Радиоактивный препарат наносили в виде раствора, идентичного ростовому раствору, но включающего в себя Ag или,31J. Слои снимали шлифованием.

Концентрацию центров окраски в тонких слоях, при диффузионных исследованиях, определяли с помощью микрофотометра МФ-2. При исследовании интегральной оптической плотности - на спектрофотометре СФ-4.


Измерения импеданса


Измерения частотных зависимостей R, С гетеропереходов проводили с помощью моста переменного тока Р568 в диапазоне 0,04...100 кГц. Колебания температуры в измерительной ячейке не превышали ±0,01 К. Анализ частотных зависимостей R, С импеданса проводили на основе модели релаксации двойного слоя с помощью графоаналитического метода и методом оптимизации.

Метод оптимизации

заключается в компьютерном подборе эквивалентных схем и минимизации нормированной функции ошибок методом сопряженных градиентов и методом Ньютона (табличный процессор Ехсе1). Применялись программы, созданные на языке «Паскаль» и основанные на симплексном методе Нелдера - Мида и на методе Хука - Дживса, отслеживающие локальные и основной минимумы.

Исследования методом потенциодинамической вольтамперометрии проводили с помощью системы, позволяющей автоматизировать работу промышленного потенциостата. В состав системы вошли потенциостат ЕР-21, персональный компьютер, аналого-цифровой и цифроаналоговый преобразователь ЕТ1050 (АЦП-ЦАП).

Измерения ионной проводимости проводили 4 - контактным методом на постоянном токе. В качестве источника постоянного тока (гальваностата) использовали универсальный прибор В7-16А в режиме

Транспортные процессы и гетеропереходы в твердофазных электрохимических системах10 измерения сопротивления. Причем, на пределах xlOOO, xlOO, xlO, xl через исследуемый образец протекал ток 1; 0,1; 0,01 и 0,001 мА соответственно.

Разработка технологии получения монокристаллов Система RbJ-AgJ-CI-bCOCHi исследована в температурном интервале 294...335 К. При температуре 330,7 К в растворе обнаружен фазовый переход, при котором температурный коэффициент растворимости меняет знак (рис.1). Ниже 330,7 К энтальпия растворения отрицательна (-21,7 кДж/моль), выше 330,7 К положительна и равна 75 кДж/моль. В точке перегиба растворимость и плотность раствора максимальны (А = 165,5%, р = 1,68 г/см3).

Фаза III идентифицирована как Rb2AgJ3. Кристаллы Rb2AgJ3 относятся к ромбической сингонии. Параметры элементарной ячейки: а = 20,0 A, b = 10,3 А, с = 4,9 А. Плотность 4,34 г/см3. Ширина запрещенной зоны ~ 3,95 eV. Температура плавления 578 К.

Фаза II идентифицирована как Ag4RbJ5. Монокристаллы Ag4RbJ5 относятся к кубической сингонии. Параметр элементарной ячейки: а =11,24 А. Рентгеновская плотность для четырех формульных единиц равна 5,38 г/ем3, совпадает с плотностью, определенной гидростатическим взвешиванием. Термограмма при нагревании фиксирует один эндотермический эффект при 503 К, который соответствует температуре плавления Ag4RbJ5.

Температурный интервал, при котором можно получить кристаллы Ag4RbJ5, узок (~276 К), поэтому выращивание монокристаллов

проводили в - изотермических условиях при 331...332 К. Скорость роста ~ 0,3 мм/сут. Рост проводили на кристаллизационной установке.

Термодинамические характеристики.

На рис.4 представлена температурная зависимость СР(Т) в интервале температур 10О-250К. Видны два узких максимума при температурах TV = 120.55К и Т2 = 208.26К, соответствующих у-»Р и р-»а переходам. При температуре Т|=120.55К (Р - переход) теплоемкость достигает значений - 2510 Дж/моль К, затем резко падает до величины 258 Дж/моль. К, превышая значение СР(Т) до перехода на 13 Дж/моль. К. В интервале температур 122-180К значение теплоемкости растет линейно с температурой по закону Ср(Т) =258+0.565 (Т - Т,) Дж/моль.К.

Выше температуры 180К начинается нелинейный рост СР(Т), и при Т2 = 208.26К теплоемкость достигает максимального значения - 2510 Дж/моль К, а затем в интервале Т2+0.74К падает до постоянного значения 292 Дж/моль. К, сохраняя его до 305К.

Проведенные квазистатические измерения СР(Т) в области фазовых переходов со скоростями нагрева 0.17 К/мин показали, что при Т) и Т2 фазовые переходы имеют скрытую теплоту перехода, равную 66.15 и 97.78 Дж/моль соответственно, причем при у->р-переходе скрытая теплота выделяется в два этапа с интервалом 0.4К (37.41 и 28.75 Дж/моль). Проведя графическое интегрирование аномальной части СР(Т) в области Ti и Т2, были оценены полная энергия и энтропия каждого перехода

AQt, = 339 ± 0.5 Дж/моль,AQtz = 565 ± 0.5 Дж/моль,

AS-n = 2.80 ± 0.29 Дж/моль. К, AS-n = 2.93 ± 0.29 Дж/моль. К.,

Общая энергия и энтропия переходов равна соответственно 4163 и 22.7. Дж/моль К.

Однако, как показали технологические испытания, RbAg4Js находится в метастабильном состоянии и может храниться сколь угодно долго в сухой атмосфере при комнатных температурах.

Наблюдения за перемещением границы фаз (рис.5) с одновременной фиксацией температуры позволили также зарегистрировать гистерезис (1,0 ± 0,2) К оптических свойств кристалла.

Исследование температурной зависимости теплоемкости (динамический режим) при нагревании и охлаждении также указывает на наличие температурного гистерезиса ~1К<ДТ<ЗК. Факт существования температурного гистерезиса позволяет отнести перехода«-»Р к переходам первого рода. При охлаждении кристалла до температуры 208К в нем скачкообразно возникает доменная структура, проявляющаяся в виде системы светлых и темных полос, повернутых друг к другу под углом 120° и перпендикулярных направлениям [ПО], [101], [ОН]. Размер доменов зависит от температуры: при понижении температуры - увеличивается, а при нагревании - уменьшается. Субдоменная структура, возникающая в кристаллах, претерпевших большое число фазовых переходов сопровождается образованием трещин, которые приводят к разрушению кристалла.

Симметрия монокристаллов Ag4RbJ5 описывается энантиоморфными пространственными группами Р4332 (О6) и P4t32 (О7). Отсутствие центра инверсии в этих группах предполагает наличие эффекта вращения плоскости поляризации. Дисперсия угла вращения плоскости поляризации измерена в интервале 435...691 нм и для угла вращения плоскости поляризации получена зависимость

р = 1,945 * 106 А.2 / [А.2 - (251) 2] 2.

Исследование температурной зависимости р показало, что при 206,5К р скачком снижается до нуля. При повышении температуры наблюдается скачкообразное увеличение р от нуля до первоначального значения при температуре 208,5К. Гистерезис р при, фазовом переходе составляет около 2 К, монокристаллы Ag4RbJ в парах иода окрашиваются, причем цвет кристаллов меняется от желтого до фиолетового, в зависимости от концентрации иода в газовой фазе.

Ск(25°С) /Ср = 0,141 ± 0,09; Ск(52°С) /Ср = 0,087 ± 0,004, связывающие эффективную концентрацию иода в кристалле (Ск) и концентрацию иода в растворе (Ср). Из соотношений следует, что иода в кристаллах подчиняется законам идеальных растворов, о чем свидетельствует постоянство коэффициента распределения в интервале 0...3 * 106 моль/см3. При более высокой концентрации кристалл разрушается.

Спектры оптической плотности окрашенных кристаллов были сняты для температурного интервала 30...300К. Смещения максимума полосы поглощения замечено не было. Форма полосы соответствует зависимости

Q = Q0 ехр [-4 (hv - hv0) 2 In 2/W2], где Q - оптическая плотность, зависящая от концентрации центров окраски; hv0=2,93 eV - энергия, соответствующая максимуму полосы поглощения; W=(0,78 ± 0,01) eV - полуширина полосы. Сила осциллятора - 0,15.

Следствием окрашивания Ag4RbJ5 в парах иода в соответствии с механизмом, предложенным в гл.6, является образование на поверхности кристалла слоя AgJ. Изучение спектров поглощения окрашенных кристаллов (Рис.6), позволило обнаружить небольшую узкую полосу 425 нм (2,92 eV). После удаления с окрашенного кристалла поверхностного слоя полоса 425 нм исчезает. Спектр тонкой пленки AgJ содержит идентичную полосу с максимумом 425 нм.

Спектр люминесценции чистой поверхности кристалла представляет собой широкую полосу с максимумом около 390 нм (рис.7). Максимум этой полосы с повышением температуры от 8 до 70 К смещается к 400 нм. При температуре 90 К полоса 390 - 400 нм уже не различима. В а - и Р - фазах спектр состоит лишь из одной линии с максимумом около 426 нм и полушириной ~ 6 нм. Интенсивность этой линии зависит только от состояния поверхности образца. Если поверхность образца чистая, то линия1426 нм отсутствует. Полоса с максимумом около 390 нм близка к положению края поглощения в пленках A&RbJs, а ее температурное смещение соответствует уменьшению запрещенной зоны кристалла при нагревании.

Аддитивное окрашивание кристаллов в парах иода изменяет картину спектра люминесценции. Наряду с полосой 390 нм появляются полосы 425 и 428 нм (рис.7). Шлифование йодированных образцов приводит к их полному исчезновению. Обнаруженные линии 425 и 428 нм совпадают с известными линиями экситонной люминесценции 2Н - и 4Н - политипов AgJ. При изучении спектров поглощения и люминесценции обнаружено, что при аддитивном окрашивании кристаллов AgRbJ в парах йода на их поверхности образуется слой иодида серебра. Температурное изменение ширины запрещенной зоны. Шириной запрещенной зоны считали то значение Eg, при котором изменение оптической плотности D максимально, т.е. при максимуме производной 5D/3E. Как видно из рис.8, смещение края поглощения можно представить тремя линейными участками, причем при фазовых переходах 122 и 209К обнаружены скачки Дшк = 0.018 и ДЕк. = 0,010 eV. Возникающее при фазовом переходе а->Р рассеяние от доменной структуры кристалла приводит к увеличению измеряемого значения оптической плотности кристалла. Поэтому полученное значение ДЕож может быть только занижено относительно истинного значения этой величины. Значение Eg при 298 и 398 К, вычисленные по соотношениям, равны 2,95 и 2,82 eV соответственно.

В четвертой главе приведены результаты экспериментальных исследований процессов, связанных с кинетикой основных носителей заряда.

Исследование процесса диффузии серебра-110 на монокристаллах было проведено в интервале температур 267...369 К двумя методами:


Таблица 1

Коэффициенты уравнения Френкеля для A&RbJs.

Суперионик Электроды а010'3, Ом|см' E,eV
Монокристалл Графит, порошок 5. 20±0.22 0.10410.001
Поликристалл Графит, порошок 5.5310. 20 0.10610.001
Монокристалл Ag - сусальное 5.64±0.13 0.108+0.001
Поликристалл Ag - фольга 5.5110.23 0.104+0.001

Учитывая результаты исследования диффузии серебра в поликристаллических образцах, полученные позднее Лазарусом и др. (1981), и результаты, полученные на моно - и поликристаллах, можно сделать заключение, что в Ag4RbJ5 отсутствует влияние межкристаллических границ на перенос ионов Ag+.


Температурная зависимость ионной проводимости


аТ = (5,5210,09) 103ехр [-(0,10610,001) еУ/кТ] Омсм»1К, полученная на основе изучения гетеропереходов графит/ Ag4RbJ5 и Ag/Ag4RbJ5 методом импеданса, и температурная зависимость

аТ = (4,65+0,03) 103ехр [-(0,100410,0001) еУ/кТ] Ом»1см»'К, полученная контактным методом на постоянном токе, незначительно отличаются друг от друга. Следовательно, поляризационные эффекты, возникающие на измерительных контактах, незначительны.

Для предсказания возможного механизма диффузии ионов серебра в Ag4RbJ5 необходимо экспериментальное определение коэффициента Хейвена Hr=d7Ds, где D* - коэффициент диффузии меченых ионов; D5-коэффициент диффузии, вычисленный из значений ионной проводимости по соотношению Эйнштейна ст = Ne2D0/kT, где N - концентрация носителей тока.

Коэффициент Хейвена, вычисленный по данным работ Бентле и где Da - кондуктометрический коэффициент диффузии ионов Ag+; N - их концентрация, е - величина заряда электрона, d - плотность суперионных проводников. Плотность, вообще говоря, зависит от температуры, но зависимость эта весьма слабая и аппроксимируется уравнением d=5,12exp(0.00117/kT). Поэтому соотношение (1) приводится к виду Т = 5.02*10'8ехр(-0.00117/кТ).

В то же время прямое сопоставление результатов измерения коэффициента диффузии ионов Ag+ методом радиоактивных индикаторов и электропроводности суперионного проводника приводит к зависимости

D*/oT = 1.46* 10-8exp(+0.011/кТ). Коэффициент Хейвена для ионов Ag+ определяется уравнением

Hr=d7d8 = 0.29ехр(0.012/кТ).

Численные значения Hr в интервале температур 273...373 К меняются от 0,48 до 0,42. Значение HR<1, по-видимому, может говорить о том, что движение ионов Ag+ в Ag4RbJs имеет кооперативный характер.

Исследование субмиллиметровых, колебательных спектров RbAgjJ Показано (рис.9), что при комнатной температуре наблюдается одна линия поглощения на частоте ~ 16 см». Переход из а - в Р-фазу почти никак не сказывается на субмиллиметровых спектрах, вызывая изменение а в точке Т =208 К менее 1%. Диффузное поглощение в а - и р-фазах - это, очевидно, поглощение на свободных носителях - ионах серебра Ag+. Резонансный пик на 16 см-1 обусловлен также движением Ag+, но в этом случае уже их колебаниями в неглубоких локальных потенциальных минимумах. Уменьшение проводимости с понижением температуры в а - и Р-фазах на низких частотах происходит в результате понижения средней энергии тепловых флуктуации, приводящего к уменьшению диффузной подвижности ионов Ag+. Этот процесс сопровождается увеличением времени жизни Ag+ в локальных положениях равновесия, что проявляется в сужении моды на 16 см»1 при охлаждении. Причем, изменение ширины линии и ее интенсивности происходит без изменения частоты. А это означает, что при Р-переходе локальный потенциальный рельеф, в котором находятся ионы Ag+, практически не изменяется.

При переходе в у-фазу расщепление моды не сопровождается изменением низкочастотного значения, т.е. суммарный

диэлектрический вклад отдельных компонент сохраняется. Это означает, что, по крайней мере, большая часть из разрешаемых в низкотемпературной фазе линий появляется просто вследствие снятия вырождения моды 16 см-1. Обращает на себя внимание также и то, что центр тяжести расщепленной линии сохраняет свое положение около 16 см»1. Следовательно, и при Р у-переходе упругость потенциала Ag+ меняется несильно, а резкое уменьшение проводимости происходит за счет нарушения путей диффузии ионов Ag+ в решетке. Окончательно, при Т = 4,2К в спектрах наблюдаются хорошо разрешенные интенсивные линии.

Исследованы спектры динамической проводимости a(v) монокристаллов AgJ в диапазоне частот 3-30 см-1 и интервале температур от комнатной до 630К. В низкотемпературной Р-фазе AgJ наблюдаются спектры o(v), типичные для диэлектрика. В ti-фазе спектры a(v) приобретают две характерные особенности - отличную от нуля статическую проводимость а0 и размытую по частоте линию поглощения, присутствующую в спектрах ниже 30 см-1. Повышение температуры в а-фазе приводит к монотонному росту на всех частотах, который, однако, наиболее быстро происходит в статике, в результате чего при высоких температурах проводимость в AgJ приближается к частотно-независимой.

На основании спектров вычислено, что при Т = 523 К ~ 60% Ag+ являются трансляционно подвижными. Соответствующие значения подвижности ионов и коэффициент диффузии составляют 1*10»»3см2/(В. с) и 4.8*10»5 см2/с. Для случая, когда 100% Ag+ участвуют в переносе, получаем максимально возможную для AgJ ионную проводимость - a = 2.7. Ом4см».

В пятой главе приведены экспериментальные результаты исследования гетеропереходов с монокристаллами и в качестве сравнения и контроля и с поликристаллическим суперионным проводником.


Гетеропереход графит (монокристалл)


Исследован в интервале 245...323 К. Для грани [ПО] получены температурные зависимости емкости двойного слоя (СО, связанной с ионами серебра, емкости двойного слоя (С2), связанной с ионами не основных носителей, и постоянной Варбурга (W2), связанной с диффузией ионов не основных носителей. Объемная проводимость практически не зависит от кристаллографического направления. В то же время параметры гетероперехода Ci, С2 и W2 закономерно меняются при переходе от граней с большей плотностью к менее плотно упакованным.

Графит/(поликристаллический AgjRbJs) W2 имеет более высокие значения, чем для граней [100], [110], и близкие к величинам W2 для грани [111] монокристалла. Емкости С] и С2 при комнатной температуре превышают соответствующие величины для любой грани кристалла.


Таблица 2. Параметры гетероперехода графит 4К. Ы5 для разных

граней монокристалла при 298 К

Грань о, С,, с2) R2, w2,

Ом»'см'1 мкФ/см2 мкФ/см2 Ом. см2 Ом. см2/с1/2.
(ЮО) 0.296 27.8- 64.8 0.010 47.8
(ПО) 0.303 14.8 30.6. 0.022 78.2
(111) 0.300 9.3 30.5 0.040 98.1

Получена температурная зависимость импеданса Варбурга гетероперехода с монокристаллом

W2 = (1.86 ±0.16) 10»2Т*ехр [(0.068±0.010) еУ/кТ] Ом. см2/с1/2 (2) и гетероперехода с поликристаллом

W2 = (3.82 ± 0.01) 10»2Т*ехр [(0.056 ± 0.001) eV/kT] Ом. см2/с1/2. (3)

Параметры гетероперехода Ае/АадКМ/монокристалл), в котором серебро было нанесено вакуумным напылением, изменяются во времени. Установлено, что при этом напыленная пленка с течением времени перестает быть сплошной и исчезает. Это явление может быть связано с фотолитическим разложением Ag4RbJj при напылении или с высокой активностью напыленной пленки. Начальные емкостные параметры при 298К в напыленном варианте выше, чем для других гетеропереходов

(С = 25 мкФ/см2, С2=330 мкФ/см2).

Гетеропереходы с серебром, которое было нанесено в виде тонкой фольги, более устойчивы. Сопротивление переноса ионов через этот гетеропереход при 298К составляет 200...350 Ом*см2. Значения емкостных характеристик С и С2 ниже, чем для гетеропереходов с графитом.

Из исследований гетероперехода Au/AgjRbJs(монокристалл 1 показано, что импеданс на низких частотах определяется пластической деформацией. .

Из анализа температурных зависимостей константы Варбурга W2, характеризующей в модели адсорбционной релаксации двойного слоя (АРДС) диффузионный импеданс не основных носителей заряда,

определим природу этих носителей. Как было показано Е.А. Укше и Н.Г. Букун, в общем случае температурная зависимость постоянной Варбурга должна иметь вид

W/Г = W0exp [Em/2kT] * [l + сеехр(-ЕУкТ)] -3/2, где Се=Со/Сп, Сп - концентрация примесных анионных вакансий; С0ехр(-ЕДТ) - концентрация термических вакансий, Ef и Ет - соответственно энергия образования анионной вакансии и энергия активации прыжка. Отсюда следует, что при низких температурах, когда сеехр(-ЕДТ) 1,

W2/T = W0exp [Em/2kT], а при высоких температурах, когда сеехр(-ЕДТ) 1,

W2/T = W’0exp [(0.5Em + 1.5Ef) /kT].

Анализ температурных зависимостей W2 от температуры позволяет определить природу не основных носителей в модели АРДС. Экспериментальные результаты для монокристалла в контакте с серебром в координатах ln(W2/T), 1/Т образуют два линейных участка (рис.10): для температур выше 305.5К -

W2 = (3.09 ± 0.84) 10-4Т*ехр [(0.183 ± 0.007) еУ/кТ] Ом. см2/с,/2, (4) для температур ниже 305.5К

W2 = (1.62 ± 0.11) 10»2Т*ехр [(0.079 ± 0.002) еУ/кТ] Ом. см2/с»2. (5)

В случае поликристаллического образца с Ag-электродами при температурах выше 285К

W2 = (2.33 ±0.44) 10”4T*exp [(0. 190 + 0.005) eV/kT] OM. CM2/c1/2, (6) ниже 285К

W2 = (3.88 ± 0.36)

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: