Xreferat.com » Рефераты по химии » Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів

Размещено на /

ЗМІСТ


ОСНОВНІ УМОВНІ ПОЗНАЧЕННЯ

ВСТУП

1. ТЕОРЕТИЧНА ЧАСТИНА

1.1 Методи дослідження рівноваги в гетерогенних системах

1.1.1 Основні положення

1.1.2 Система Р – Т

1.1.3 Система Г – Р

1.1.4 Система Г-Р-Т

1.1.5 Система Г-Т

1.2 Дослідження кінетики масообміну

1.2.1 Специфіка вивчення кінетики хімічних реакцій

1.2.2 Методи вивчення кінетики гетерогенно-каталітичних реакцій (системи Г-Т і Р-Т)

1.2.3 Основи формальної кінетики. Швидкість хімічної реакції

1.2.4 Кінетична модель топохімічних реакцій

1.3 Методи розрахунків

1.3.1 Інтегральні методи розрахунку кінетичних констант

1.3.1.1 Одинична реакція першого порядку

1.3.1.2 Одинична реакція другого порядку

1.3.1.3 Одинична реакція n-го порядку

1.3.1.4 Метод графічної інтеграції

1.3.1.5 Метод постійних частин

1.3.2 Оцінка застосовності теоретичних рівнянь

1.3.3 Розрахунок енергії активації

2. ПРАКТИЧНА ЧАСТИНА

2.1 Постановка завдання

2.2 Виконання завдання

ВИСНОВОК

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

гетерогенна кінетика хімічна реакція

ОСНОВНІ УМОВНІ ПОЗНАЧЕННЯ


V - швидкість реакції;

C– концентрація регента;

τ – час;

k – константа швидкості реакції;

K - коефіцієнт масопередачі;

F - поверхня розділу фаз;

ΔC - рушійна сила процесу;

N – кількість речовини;

β– ступінь перетворення;

τ1/2 - час напівперетворення;

α – ступінь напівперетворення;

Е – енергія активації.


ВСТУП


Курсова робота на тему «Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів» з дисципліни «Хімічна технологія неорганічних речовин».

Курсова робота виконується з метою засвоєння на практиці основних методів дослідження стану рівноваги і кінетики хіміко-технологічних процесів, основ розрахунку кінетичних констант, визначення механізму і області протікання процесів.

Вивчення даної дисципліни ґрунтується на знаннях, одержаних при вивченні таких дисциплін: загальна і неорганічна хімія, фізична хімія, фізика, вища математика, теоретичні основи технології неорганічних речовин, кінетика і каталіз, основи наукових досліджень і наукова інформація і інших.

Мета і задачі курсової роботи:

засвоєння на практиці основних методів дослідження стану рівноваги і кінетики хіміко-технологічних процесів;

засвоєння основ розрахунку кінетичних констант;

визначення механізму і області протікання процесів.


1. ТЕОРЕТИЧНА ЧАСТИНА


1.1 Методи дослідження рівноваги в гетерогенних системах


1.1.1 Основні положення

Інформація про рівновагу є первинною при створенні технологічного процесу. В гомогенних системах, термодинаміка яких детально розроблена, вона може бути одержана і розрахунковим шляхом за методами які розглядаються в курсах «Фізична хімія» та «Теоретичні основи технології неорганічних речовин». В гетерогенних системах її дуже часто визначають тільки дослідним шляхом.

Для дослідження рівноваги в гетерогенних системах використовують дві групи базових методів: статичні і динамічні. В статичних методах завантажені в реактор реагенти витримують до встановлення рівноваги, не обновлюючи. Динамічні методи, або проточні - це методи з реагентами, які в ході досліду вводять в реактор і виводять з нього, замінюючи свіжими. Широке поширення набули також комбіновані методи: статичні по одній фазі (наприклад, по рідкій) і динамічні по іншій (наприклад, по газу). В циркуляційних методах динамічний принцип роботи поєднується з відсутністю введення свіжих реагентів, що характерне для методів статичних. Вони, отже, є варіантом статичного методу. Схемне зображення методів, вживаних при вивченні гетерогенної рівноваги, приведено на рис.1.

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів

Рис. 1. Схематичне зображення методів:

а – статичний метод;

б – метод статичний з зовнішньою циркуляцією однієї з фаз (циркуляційний); в – динамічний метод;

г – комбінований метод (проток однієї з фаз відсутній)


Збільшенню швидкості перебігу процесу сприяє диспергування і перемішування фаз. Обидва прийоми підвищують швидкість перенесення компонентів системи до поверхні розділу фаз. Диспергування припускає попереднє подрібнення частинок твердої фази і введення газу в рідину через дисперсійні перегородки (наприклад, фільтр Шотта). Можливості диспергування небезмежні, і в лабораторних умовах одержати пил або міхур газу розміром істотно нижче 0,1 мм важко. Принципи перемішування очевидні з рис.1: мішалка (а), циркуляція (б), протока (в, г).

Диспергування і перемішування – це, у відомому значенні, турбування експериментатора про самого себе: чим вище швидкість встановлення рівноваги, тим швидше буде завершений дослід. Контроль перебігу процесу в часі - це борг експериментатора. Але, без "виплати" його немає, і не може, бути вивчення рівноваги, оскільки не яке окреме вимірювання виконане через будь-який, навіть дуже значний, проміжок часу після початку досліду, не має в собі самому ознаки рівноваги. Воно одержує це через зіставлення з іншими вимірюваннями, у тому числі, з вимірюваннями, що здійснені через інші (і великі, і менші) проміжки часу.

У багатофазній системі число ступенів свободи, що визначають стан рівноваги, дається рівнянням Гиббса - Дюгема:


У = К - Ф+2


де: У - число ступенів свободи

К - кількість компонентів

Ф - число фаз

2 – ступені свободи, що доводяться на "постійні" термодинамічні параметри: температуру і тиск.

Це ж рівняння, по суті, визначає кількість незалежних змінних в дослідах по вивченню рівноваги. Наприклад, для чотирьох компонентів, що відповідає реакції:


А + В « С + Д


і двох фаз кількість незалежних змінних рівна чотирьом. До них слід віднести температуру, тиск і концентрації двох будь – яких компонентів. Цю сукупність змінних позначають через Т, Р і Сij (i - номер компоненту, j - номер фази) і називають термодинамічними параметрами системи. Кожний дослід по вивченню рівноваги здійснюють в деякій точці багатовимірного простору, утвореного цими параметрами. Рухаючись по ньому з вибраною стратегією (наприклад, відповідно до правил статистичного планування, які розглядаються в курсі “Математичне моделювання і застосування ЕОМ”), дослідник здійснює більш менш повне вивчення об'єкту. Нижче розглядається техніка вивчення гетерогенної рівноваги в системах, що найбільш часто зустрічаються в неорганічній технології. Фази систем позначені заголовними буквами: Г - газ, Р - рідина, Т - тверде тіло.

1.1.2 Система Р – Т

Набір термодинамічних параметрів в цій системі рівний двом найменуванням: Т і Cij (оскільки Сij – може бути набагато більше ніж 1, то говорити про два параметри не можна). Тиск виключений. Він пов'язаний з газовою фазою, яка за умов задачі неістотна. Область зміни температур в технології неорганічних речовин практично обмежується температурами замерзання і кипіння води (або іншого розчинника). Область зміни концентрацій речовини, що розчиняється, обмежується з одного боку нулем (немає речовини в розчині) з другого боку – концентрацією насиченого розчину при заданій температурі (речовина перестає розчинятися). Отже,


Т, Р, Cij ®Т (0 ч 100 0С), Cij (0 ч Снас).


Транспорт твердого матеріалу, як правило, ускладнений. В лабораторних умовах використання великих кількостей рідкої фази (водні розчини кислот, солей і лугів) небажане. Сукупність всіх цих обставин призводить до того, що найпереважнішим типом реактора є статичний, схема якого була приведена на рис.1. Він є термостатованою відкритою колбою або стаканом. Реактор обов'язково обладнають мішалками.

У реактор послідовно завантажують твердий матеріал і рідину, включають мішалку і ведуть відлік часу, періодично відбираючи на аналіз рідку фазу. В ході проміжних аналізів звичайно визначають зміст тільки ключового компоненту. Як ключовий компонент, непридатна речовина, що знаходиться в системі у великому надлишку - його концентрація змінюється мало. В цій же якості незручна речовина, концентрація якої дуже низька, оскільки її визначення звичайно ускладнене. Як ключову слід вибирати речовину, для якої зміни концентрації визначаються легко і точно.

Якщо передбачений фізико–хімічний аналіз, то пробу після визначення в ній ключового компоненту повертають в реактор. При хімічному аналізі пробу в реактор не повертають, а спад речовин, звичайно, враховують шляхом складання по-компонентних матеріальних балансів.

Після досягнення рівноваги фази розділяють. Це одна з найважчих операцій методу, особливо якщо вивчення рівноваги проводять при температурі, яка суттєво відрізняється від кімнатної. В ході фільтрації і декантації відбувається зміна температури розчину, що міняє рівноважні співвідношення. Тому ці операції проводять на фільтрах, що обігріваються (охолоджуються), і по можливості швидко. Повне розділення фаз вимагає, крім того, промивки осаду на фільтрі, що може супроводжуватися його частковим розчиненням. Підбору промивної рідини, її кількості, температурі і доцільності її приєднання до основної маси фільтрату надається особлива увага.

Фільтрат аналізують на всі компоненти системи. Аналіз твердої фази, якщо він представляє значні труднощі, в технологічних дослідах часто не проводять. Склад її розраховують на підставі матеріальних балансів компонентів в рідкій фазі.

У неорганічній технології описану вище техніку експериментатор використовує при вивченні сольової рівноваги і процесів екстракції речовин з природної сировини (наприклад, фосфорної кислоти з фосфоритів).


1.1.3 Система Г – Р

Число найменувань термодинамічних параметрів в цій системі дорівнює трьом. Інтервал температур, як і в системі Р - Т, дорівнює 0 ч 100°С. Тому Т, Р, Cij Т( 0 ч 100°C), Р(0 ч Рзж), Cij(0 ч Снас.).Інтервал по тиску у верхній межі обмежується, як правило, тиском зжиження газу, а інтервал по концентраціях – концентрацією насиченого розчину (наприклад, при її підвищенні ми можемо одержати трифазну систему, оскільки розчинена речовина почне кристалізуватися). Для вивчення рівноваги в системі Г - Р частіше за інші використовують комбінований метод: проточний по газу і статичний по рідині. Його реалізують у вигляді двох варіантів, які можна назвати методом "рівноважного тиску" і методом "рівноважних складів". В методі "рівноважного тиску" летучий компонент переходить з рідини в газову фазу так, щоб в ній досягався парціальний тиск компоненту, рівноважний складу рідини. В методі "рівноважних складів" має місце зворотний перехід. В ньому забезпечують склад рідини, рівноважний парціальному тиску компонентів газової фази.


1.1.4Система Г-Р-Т

У неорганічній технології використовують речовини, які як правило, добре змочувані водою. Тому рівновага в системі Г-Р-Т зводиться до рівноваги в двох пов'язаних між собою системах: Г-Р і Р-Т. Незалежне вивчення кожної з цих систем, якщо воно можливе, дозволяє розрахувати рівноважний стан трифазної системи. Якщо потреба в експериментах все ж таки є, то для їх виконання використовують методи, вживані в системі Г-Р; вони поєднують в собі елементи, достатні для вивчення будь-якої із зв'язаних двофазних систем. В реакторі, природньо, буде знаходиться суспензія Т в Р.

Основна складність будь – якого методу вивчення рівноваги, пов'язана з фіксацією його встановлення. В цій системі вона ускладнена тим, що швидкість встановлення рівноваги в парах, Г-Р і Р-Т може виявитися істотно різною. Аналіз на швидкому "плечі" системи може свідчити про встановлення рівноваги, яка насправді не досягнута. Тому контролю рівноваги слід надати підвищену увагу, а аналіз повинен обов'язково захоплювати фази повільного "плеча" системи.


1.1.5 Система Г-Т

Для цієї системи характерний повний набір термодинамічних параметрів, і дуже широкий інтервал їх зміни. Він майже не має обмежень для тиску. Для температури нижньою межею є абсолютний нуль, а верхнім - температура плавлення твердого тіла.

Для вивчення рівноваги в системі Г-Т широко використовують комбінований і статичний методи. Вибір методу в основному обумовлений тиском: при атмосферному і підвищеному тиску застосовують комбіновані установки, для вимірювань у вакуумі - статичні. Дані про рівновагу в системах Г-Т необхідні для створення процесів кальцинації твердих речовин і адсорбційного очищення газів. Їх використовують і при визначенні величини питомої поверхні адсорбентів і каталізаторів, при вивченні властивостей поверхні твердих тіл і структури пор в них.


1.2 Дослідження кінетики масообміну


Вивчення рівноваги дає необхідну, але для розрахунку технологічного процесу (апарату) недостатню інформацію. Процес протікає в часі, в апараті обмежених розмірів; і кінцевий стан компонентів і фаз, що беруть участь в ньому, відрізняється від асимптотичного (t®Ґ ) рівноважного стану.

Структура математичних моделей більшості сучасних хіміко-технологічних процесів (апаратів) в даний час загалом добре розроблена. Модель звичайно включає рівняння збереження маси і енергії, рівняння їх перенесення між фазами системи, рівняння перетворення компонентів у фазах або на межі їх розділу, дані про граничний (рівноважний) стан системи і умови однозначності. По рівню специфічності рівняння моделі розпадаються на дві групи. До першої відносяться рівняння збереження і умови однозначності. Це специфічні елементи моделей: їх форма залежить від типу і конструкції апарату, їх параметри відображають умови процесу і розміри апарату. Отже, ніщо, пов'язане з цими елементами, не може і не повинне бути пов'язане з експериментом, щонайменш, з лабораторною його стадією.

Специфіка процесу лише опосередковано впливає на рівноважний стан системи: вона задає умови, але не визначає ні форму, ні параметри. Те ж саме можна сказати про рівняння кінетики. Рівняння кінетики і рівноважні співвідношення неспецифічні, не пов'язані з конкретним процесом і апаратом. Саме тому рівновага і кінетика можуть бути предметом експерименту.

Маючи взагалі не специфічність, дані про рівновагу і кінетику, ні в якому разі, нерівноправні в математичних моделях процесів і апаратів. До форми перших ставляться нежорсткі вимоги. Їх можна задати і у вигляді таблиці експериментальних даних. Але без доказів очевидна мала цінність таблиці експериментальних даних за течією в часі ("кінетика") процесу, реалізованого в експериментальному реакторі. Причина полягає в тому, що ця "кінетика" не звільнена від специфіки лабораторного реактора (конструкції, розмірів, умов роботи і т.ін.), яка нетотожна специфіці промислового об'єкту. Усунення специфіки і складає головну задачу експериментатора, що працює на математичне моделювання промислового апарату, і досягається вона через математичне моделювання об'єкту експериментування. Подібне, дійсно, пізнається подібним.

Математичне моделювання експериментального об'єкту - невід'ємна частина дослідів, метою яких є забезпечення проектних робіт із створення нових виробництв. Воно багато в чому визначає конструкцію експериментальної установки і методологію виконання дослідів. Втім, справедливе і більш звичне зворотне твердження: установка і дослід визначають структуру і зміст математичної моделі.


1.2.1 Специфіка вивчення кінетики хімічних реакцій

Вивчення кінетики хімічних реакцій це більш складніший етап дослідницької роботи, ніж вивчення масообміну: зростає число належних до визначення коефіцієнтів, складнішою стає підтримка постійної температури, більш жорсткими стають вимоги до рівня ізотермічності. Цілком нездійсненною може виявитися умова постійності розділу фаз: саме протікання реакції може бути пов'язано з руйнуванням старих фаз і виникненням нових. Вивчення хімічних реакцій часто виявляється справою швидше мистецтва, ніж логіки.

Порівняно простий випадок представляє кінетика гетерогенних каталітичних реакцій. В ході них каталізатор у взаємодії як би не бере участь. Такі реакції називають квазігомогенними. Техніка їх вивчення розроблена достатньо добре.

Хімічна реакція, навіть гомогенна, є звичайно складним багатоступінчатим процесом. Розшифровка її механізму, підсумком якого є пізнання природи реакції і визначення фізично достовірних параметрів кінетики її протікання, є дуже складною задачею. Тому в технологічних дослідженнях кінетику реакцій часто розглядають формально, швидкість яких виражають у формі закону діючих мас. Реакції, які вдається описати таким чином, називають простими.


1.2.2 Методи вивчення кінетики гетерогенно-каталітичних реакцій (системи Г-Т і Р-Т)

Формально каталізатор не бере участі в перетвореннях, і каталітична реакція, як вже наголошувалося, є квазігомогенною. Тому в рівняннях математичної моделі присутні тільки концентрації реагенту в потоці.

Для вивчення кінетики каталітичних реакцій використовують реактори трьох типів (три метода): інтегральний, диференційний і циркуляційний.

У зовнішньо-кінетичній області реакція переважно протікає на поверхні каталізатора. Дифузія з потоку до поверхні більш не лімітує процес, а дифузія реагенту в глиб зерна каталізатору виключена, наприклад, через те, що каталізатор непористий. Порядок швидкості реакції так само, як константа швидкості і енергія активації, у зовнішньо-кінетичній області визначають саму хімічну реакцію і є кінцевим результатом дослідження формальної кінетики процесу, що вивчається.

Зовнішньо-кінетична область протікання процесу може спостерігатися і на пористих каталізаторах. Це звичайно має місце тоді, коли швидкість реакції така висока, а коефіцієнт дифузії реагенту в гранулу такий малий, що реагент зазнає перетворення, не встигаючи скільки-небудь помітно дифундувати в глиб гранули, тобто він реагує на її поверхні.

Частіше ж в пористій гранулі спостерігають внутрішньо-дифузійну і внутрішньо-кінетичну області протікання реакції. Розглянемо умови, протилежні умовам протікання зовнішньо - кінетичного процесу: швидкість реакції дуже мала, а комплекс для реакції дуже великий. Із-за великої проникності гранули каталізатора весь об'єм її пронизаний реагентом. Концентрація реагенту на поверхні гранули і в будь-якій крапці усередині неї практично однакові. Реакція з однаковою швидкістю протікає у всьому об'ємі пористого каталізатора. Такий режим і називають внутрішньо-кінетичним. Його характерна ознака, що констатується експериментатором, полягає в незалежності константи швидкості від розміру гранули, якщо цей розмір змінюється у бік зменшення. І фізично, і по здоровому глузду це зрозуміло: якщо в "великій" гранулі градієнт концентрацій був відсутній, то в малій він свідомо спостерігатися не буде. Константа швидкості, порядок реакції і енергія активації, визначені в дослідах, у внутрішньо-кінетичній області відображають перебіг самої хімічної реакції.

Зовнішньо-кінетична і внутрішньо-кінетична області - це, якщо можна так сказати, крайні крапки на шкалі можливих режимів реакції. "Попасти в точку" - маловірогідний успіх для експериментатора. Звичайно він має справу зі всією шкалою режимів, в яких одночасно виявляється вплив і процесів перенесення речовини усередині гранули, і його перетворення. Ця широка область носить назву внутрішньо-дифузійної. Для зовнішньо-кінетичного процесу гранула як би непрозора, і реагент усередині неї відсутній. При внутрішньо-кінетичному - гранула володіє ідеальною проникністю: у всьому об'ємі її концентрація реагенту однакова, і з однією і тією ж швидкістю протікає хімічна реакція. Розподіл концентрацій у внутрішньо - дифузійній області або, як то кажуть, глибина проникнення реакції в гранулу, залежить від співвідношення між швидкістю реакції і швидкістю дифузії реагенту. Відносно висока швидкість реакції - реагент перетворюється, не встигнувши про дифундувати углиб, реалізується майже зовнішньо-кінетичний режим. І навпаки, відносно висока швидкість дифузії - реагент встигає, хоч і нерівномірно, розподілитися за об'ємом гранули, реалізується майже внутрішньо-кінетичний режим. Змінюючи розмір гранули каталізатора, експериментатор, що вивчає перебіг хімічної реакції, переводить процес з "незручної" внутрішньо-дифузійної області в зручніші зовнішньо і внутрішньо-кінетичні. Збільшення діаметру приведе до зрушення в область зовнішньо - кінетичну, зменшення - в область внутрішньо кінетичну. Але можливості експериментатора і його апаратура обмежені і часто експериментальний перехід в "чисті" області виявляється неможливим. Доводиться вдаватися до розрахункового апарату, що дається теорією макрокінетики каталітичних реакцій, і визначати значення параметрів, що характеризують хімічну реакцію, із значень, знайдених в дослідах для змішаної внутрішньо-дифузійної області протікання процесу. Вивчаючи процес при різних швидкостях потоку, при різних температурах і на зернах різного розміру, експериментатор встановлює область протікання реакції і міняє ці умови так, щоб підвищити "якість" шуканих параметрів в ході самого експерименту або в ході подальших розрахунків.


1.2.3 Основи формальної кінетики. Швидкість хімічної реакції

При протіканні реакції:


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (1)


зліва направо концентрація речовин А1 і А2 зменшується, а концентрація речовин А3 і А4 збільшується.

Швидкість реакції (1) визначається зміною концентрації реагентів в одиницю часу. Для реакцій, що протікають при постійному об'ємі в закритих системах, швидкість реакції виражають рівнянням

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (2)


де vi і Сi — відповідно стехіометричний коефіцієнт і концентрація i-го реагенту у момент часу τ.

Швидкість реакції завжди позитивна. Тому в рівнянні швидкості реакції (2) ставлять знак плюс, якщо швидкість реакції визначають по зміні концентрації кінцевої речовини в одиницю часу, і знак мінус, якщо швидкість визначається по зміні концентрації початкової речовини.

Згідно закону дії мас швидкість реакції V пропорційна твору концентрацій реагуючих речовин в ступенях, рівних їх стехіометричним коефіцієнтам в рівнянні швидкості реакції. Для елементарної реакції (1), що протікає зліва направо (пряма реакція), швидкість реакції V виражається рівнянням


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (3)


де k1 — коефіцієнт пропорційності — константа швидкості прямої реакції;

С1 і C2 — концентрації речовин A1 і А2.

Таким чином, рівняння швидкості масопередачи для гомогенного процесу може бути представлено у вигляді


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (4)


Рівняння швидкості масопередачи гетерогенних процесів


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (5)


де k - коефіцієнт масопередачи;

F - поверхня розділу фаз;

ΔC - рушійна сила процесу.


Коефіцієнт масопередачи - це кількість речовини в кілограмах, передана з однієї фази в іншу через поверхню зіткнення фаз, яка дорівнює 1 м2, при рушійній силі процесу, рівній 1 кг/м3, протягом 1 години. При цьому розмірність коефіцієнта масопередачи буде м/год. Коефіцієнт масопередачи в гетерогенному процесі складна величина, залежна не тільки від хімічних властивостей реагуючих речовин, але і від їх фізичних властивостей, швидкостей потоків, ступеня перемішування, а у ряді випадків від конструктивного оформлення реактора.

Найчастіше швидкість процесу V виражають зміною кількості dNВ вихідної речовини або її концентрації dCВ, кількості або концентрації продукту dNП і dCП, а також ступені перетворення β за час dτ:


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів


Є відмінності в характері зміни швидкостей процесів залежно від режиму роботи реактора. У реакторах з періодичним завантаженням нової порції реагентів і відведенням продуктів реакції концентрації реагентів і швидкість процесу зменшуються у міру його здійснення. По довжині безперервно діючого проточного реактора ідеального витискування спостерігається аналогічна залежність. Що стосується реакторів ідеального змішування, то зміни концентрації в них реагуючих речовин і продуктів в часі підтримуються майже постійними від зони завантаження до зони вивантаження маси з апарату (в всьому об’ємі реактору).

Реальний процес хімічних взаємодій є підсумком протікання паралельних і послідовних простих реакцій, кожна з яких йде з швидкістю, яка визначається особливостями умов процесу в системі.

По числу молекул, що беруть участь в елементарному акті хімічного перетворення, розрізняють реакції мономолекулярні, бімолекулярні і тримолекулярні. Оскільки вірогідність одночасного зіткнення трьох молекул мала, тримолекулярні реакції зустрічаються рідко.

Одностороння хімічно зворотня елементарна реакція першого порядку може бути представлена рівнянням

А → Продукти реакції

Швидкість реакції першого порядку рівна:


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (6)


де k – коефіцієнт пропорційності (константа швидкості реакції);

C - поточна концентрація речовини А.


Інтегруючи рівняння (6), одержимо


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (7)


де C0 і C —вихідна і поточна концентрації речовини А.

Рівняння (7) можна представити у вигляді


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (8)


де СХ — зміна концентрації речовини А за час τ;

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів - ступінь перетворення.

ЯкщоМетоди експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів, то


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (9)

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (10)


де Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів— час напіврозпаду, тобто час, протягом якого прореагує половина речовини.


Одностороння хімічно зворотня реакція другого порядку схематично може бути представлена рівнянням

А1 + А2 → Продукт (продукти) реакції

Швидкість реакції другого порядку дорівнює


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (11)

де С1 і С2 – поточні концентрації А1 і А2.

Інтегруючи рівняння (11), одержуємо


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (12)


Якщо С1=С2=С, то рівняння (11) прийме вигляд


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (13)


і після інтегрування

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (14)


при С=С0/2


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (15)

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (16)


Час напівперетворення Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів для реакції другого порядку обратно пропорційно початкової концентрації реагуючих речовин.

У разі односторонньої реакції п-го порядку


А1 + А2 + А3 + ... → Продукт (продукти) реакції

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів то швидкість реакції дорівнює

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (17)

Інтегруючи рівняння (17), одержимо


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (18)


Якщо С=С°/2, то


Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (19)

Методи експериментальних досліджень і розрахунків кінетики хіміко-технологічних процесів (20)

Час напівперетворення реакції п-порядку обратно пропорційно початковій концентрації реагентів в ступені (п-1).

Порядок реакції визначають, використовуючи дослідні дані про зміну концентрації реагуючих речовин з часом. Якщо в реакції бере участь декілька речовин, необхідно визначити приватні порядки по відношенню до кожної з цих речовин. Існує декілька способів знаходження приватного порядку і порядку реакції.


1.2.4 Кінетична модель топохімічних реакцій

Хімічні перетворення твердих речовин у контакті з газовою або рідкою фазами, а також поліморфні перетворення, що супроводжуються виникненням нової стабільної або метастабільної твердої фази, відносяться до топохімічних. Ці реакції можуть протікати як під дією імпульсів ззовні (термічного, магнітного, звукового, механічного, променевого і т.п.), так і внаслідок реакційної активності взаємодіючих речовин. При цьому тверда фаза, що знов утворюється, може бути стійкою або може розкладатися після деякого індукційного періоду. Прикладами топохімічних реакцій є:

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: