Xreferat.com » Рефераты по химии » Гальмування залізоініційованого окиснення фосфоліпідів

Гальмування залізоініційованого окиснення фосфоліпідів

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

ХІМІЧНИЙ ФАКУЛЬТЕТ


МАГІСТЕРСЬКАРОБОТА


на тему: Гальмування залізоініційованого окиснення фосфоліпідів


Магістр: Льовкіна Вікторія Вікторівна

Спеціальність: 8.07301 “Хімія”

Затверджено наказом №126/08 від 10 лютого 2004 р.

Керівник: к.х.н., професор кафедри

Ніколаєвський Алим Микитович


Донецьк-2004

До захисту магістрської роботи допустити протокол № 17

від “3 ”червня 2004 р.

Зав. кафедрою фізичної хімії, к.х.н., професор Ніколаєвський Алім Микитович

________________________


Магістрська робота захищена з оцінкою _________

“____” _____________ 2004 р.


Секретар ДЕК ___________________

________________________________

________________________________


Зміст


Вступ

Теоретична частина

1.1.Емульсія фосфоліпідів яєчного жовтка як модель пероксидного окиснення ліпідів

1.2.Механізм залізоініційованого окиснення вуглеводнів

1.3.Антиоксидантний захист біологічних об’єктів

1.3.1. Регуляторні системи пероксидного окиснення ліпідів

1.3.2. Особливості дії природних антиоксидантів

1.3.3.Гальмування процесів окиснення синтетичними інгібіторами фенольного типу

1.4.Методи дослідження біологічного окиснення

2. Експериментальна частина

2.1. Газоволюмометричний метод

2.2. Тонкошарова хроматографія

2.3 Техніка безпеки

3. Гальмування залізоініційованого окиснення фосфоліпідів

Висновки

Література

Вступ


У зв’язку із забруднюванням навколишнього середовища та ростом поширення різноманітних хвороб, розвиток яких прямо чи посередньо пов’язан з ушкоджуваною дією вільних радикалів, питання забеспеченості організма людини антиоксидантами стоїть достатньо гостро. Тому пошук нових ефективних біоантиоксидантів представляється дуже актуальною і важливою науковою і практичною проблемою особливо для України, що пов'язано з наслідками Чорнобильської аварії.

Найбільш вивченими інгібіторами радикально-ланцюгових процесів є фенольні сполуки. Однак, спроби перенести результати, отримані in vitro, на біологічні системи не завжди успішні, тому що складні міжфазні явища in vivo визначають поведінку антиоксидантів в окисному процесі. Тому сучасні дослідники для оцінки антиоксидантів використовують тестові системи, наближені до біологічних. Однієї з них є емульсія яєчного жовтка – біохімічна система, що містить мембранні структури клітин. Дані, отримані на цій моделі, мають велику достовірність з погляду застосування до біологічних процесів, тим більше, що окиснення проводять в умовах, близьких до фізіологічних.

У зв'язку з цим метою даної роботи стало вивчення закономірностей інгібуючої дії фенольних антиоксидантів в процесі залізоініційованого окиснення жовточних ліпопротеїнів для пошуку нових ефективних антиоксидантів.

Теоретична частина


1.1. Емульсія фосфоліпідів яєчного жовтка як модель пероксидного окиснення ліпідів


В даний час загальновизнаною є роль пероксидного окиснення ліпідів в біологічних організмах [1]. В нормальному функціонуванні живих клітин першорядне значення мають біологічні мембрани, динамічними компонентами яких, що забезпечують стабільність біомембраної організації, є фосфоліпіди. В тканинах організмів утворення пероксидів і їхня витрата знаходяться на постійному стаціонарному рівні. Порушення цієї рівноваги в будь-який бік призводить до виникнення різних патологій.

Щоб дослідити можливість регулювання пероксидного окиснення ліпідів, що протікає за вільнорадикальним механізмом [2], для пошуку ефективних антиоксидантів цього процесу велике значення мають експерименти по моделюванню природних структур клітини.

Існують різні моделі пероксидного окиснення ліпідів.

I. Природні системи:

плазма людської крові [3,4],

гомогенати органів [2].

Дані моделі дуже нестабільні і легко окиснюються.

II. Синтетичні моделі пероксидного окиснення ліпідів у різних хемілюмінесцентних системах:

– модель, яка складається з пероксида водню і пероксидази з кореня хрону [5],

люмінол з додаванням ініціаторів [6],

лінолева кислота [7],

які далекі від живої системи.

Класичною моделлю клітинних мембран живих організмів є емульсія ліпопротеїдів яєчного жовтка [8,9], що дозволяє адекватно оцінювати антирадикальну активність досліджуваних сполук за ефектом гальмування пероксидного окиснення. Ця система відрізняється своєю доступністю, великою стабільністю при збереженні, дозволяє використовувати звичайні лабораторні методики й апаратуру для визначення рівня пероксидації ліпідів [10].

В медицині і біології широко використовується емульсія яєчного жовтка в фосфатному буфері. Сам жовток [11] на ~50% складається з води, 16% – білка, 34% – жирів, тому він являє собою емульсію, де жир у водній фазі є головною складовою частиною.

У жовтку яєць зосереджені практично всі ліпіди: прості ліпіди і жири, вміст яких складає біля 2/3 всіх ліпідів, і складні ліпіди (жироподібні сполуки), в основному фосфоліпіди – 37%, з них 82% – фосфатидилхолін, 15% – фосфатидилетаноламін. Більш 60% жирних кислот, що входять до складу ліпідів яйця, є ненасиченими, які в свою чергу беруть участь у пероксидному окисненні.

Як природна система емульсія містить вітаміни, ферменти, багато хто з них є ендогенними антиоксидантами.

Біологічні мембрани являють собою напівпроникний бар'єр, що відокремлює клітину від навколишнього середовища і дозволяє їй існувати як єдине ціле. Незважаючи на різноманітність біологічних функцій, форм і розмірів всі мембрани побудовані в основному з 2-х типів речовин: ліпідів і білків. Мембранні ліпіди – низькомолекулярні речовини, які відносяться до жирів. Характерна риса будь-якої ліпідної молекули полягає в тому, що вона побудована з двох частин: (полярної) голівки, яка несе електричні заряди і на яку приходиться не більш чверті довжини всієї молекули, і довгих хвостів, що не несуть електричного заряду [12]. Хвости ліпідної молекули – довгі ланцюги, побудовані з атомів С и Н. Голівки можуть мати різноманітну будову, але для ліпідів мембран найбільш характерні два типи: похідні цукрів – гліколіпіди чи похідні фосфорної кислоти – фосфоліпіди.


Рис.1.1. Схема будови молекул фосфоліпідів.


Варто помітити, що полярні голівки всіх ліпідних молекул або заряджені негативно, або нейтральні (несуть одночасно і негативні, і позитивні заряди). В ліпідних молекулах ланкою, яка зв’язує хвіст і голівку, найчастіше служить залишок гліцерину; такі сполуки носять загальну назву – гліцероліпіди.

На схемі будови у ліпідів зображено два неполярних хвости. Ця характерна риса більшості ліпідних молекул, що входять до складу мембран.Одноланцюгові ліпіди звичайно не синтезуються клітинами в значній кількості, тому що вони руйнують мембрани [13].

Ліпіди, що входять до складу біомембран, можна підрозділяти на полярні ліпіди (фосфо–, гліко– і сфінголіпіди) і нейтральні (стерини).

В молекулах фосфоліпідів залишок фосфорної кислоти з'єднаний із гліцерином, ацільованим двома залишками жирних кислот. В природних фосфоліпідах в положенні 1 знаходиться, як правило, залишок насиченої жирної кислоти (найчастіше пальмітинової чи стеаринової), а в положенні 2 – залишок ненасиченої кислоти (олеїнової, лінолевої, арахідонової і декозагексаєнової) [13].

Основними компонентами мембран є фосфатидилхолін (ФХ), фосфатидилетаноламін (ФЕА), холестерин і різні гліколіпіди:


Фосфатидилхолін (лецитин)


Фосфатидилетаноламін (кефалін)


Наявність в молекулах ліпідів двох частин має пряме відношення до їх здатності утворювати мембрани. Ліпіди дуже погано розчиняються як в полярному розчиннику – воді (заважають неполярні хвости), так і в неполярному середовищі – олії (заважають полярні голівки). Щоб підкреслити різне відношення до води й олії, голівки називають гідрофільними, а хвости – ліпофільними. Відповідно ліпіди, молекули яких містять як гідрофільне, так і ліпофільне угрупування, називають амфіфільними речовинами.

Внаслідок поганої розчинності у воді і схильності до агрегації фосфоліпіди в водній фазі вже при низьких концентраціях (10-7–10-9М) здатні самоорганізовуватися або в структури типу протяжних подвійних шарів, що відділені один від одного водною фазою, або в замкнуті бульбашки – ліпосоми.

Ліпосоми (везикули) є найближчим аналогом біомембран. Вони являють собою замкнуті сферичні структури , що містять всередині воду в вигляді бульбашки і мають один чи кілька подвійних шарів ліпідів [14].



Рис.1.2. Ліпід-білковий подвійний шар – рідинно-мозаїчна модель.


Везикули можуть бути отримані із синтетичних амфіфілів і екстрактів мембран. Реконструйовані мембрани, тобто ліпосоми з мембранних складових клітин, містять майже всі компоненти клітинної мембрани: ліпіди, білки, гліколіпіди тощо.

Фосфоліпіди орієнтовані в подвійному шарі таким чином, щоб звести до мінімуму взаємодію між аполярними частинами їхніх молекул з водною фазою. Тому в подвійному шарі залишки жирних кислот контактують один з одним і формують гідрофобну зону, що відділена від водної фази зарядженим шаром, що складається з полярних “голівок”. Асоціація ліпідів в структури, обумовлена гідрофобними взаємодіями, супроводжується зменшенням вільної енергії, в результаті чого ці структури є стабільними. Ліпідний подвійний шар володіє одночасно і текучістю, і упорядкованістю структури, в зв'язку з чим у мембрані здійснюються взаємодії не тільки ближнього, але і далекого порядку. Така сукупність властивостей характерна для рідиннокристалічного стану, існування якого є необхідною умовою життєдіяльності біологічних систем.

Рухливість компонентів ліпідного подвійного шару забезпечується як визначеними властивостями молекул фосфоліпідів взагалі, так і властивостями окремих груп в кожній молекулі. Молекула фосфоліпідів в подвійному шарі може робити рухи трьох типів: обертання навколо власної осі, переміщення в площині подвійного шару (латеральна дифузія) і переміщення з одного шару в іншій (фліп-флоп) [13].

Простий фосфоліпідний подвійний шар має товщину ~37Е, що може збільшуватися до 45-50Е, якщо подвійний шар зв'язує холестерин і білок [12].

Основними компонентами біомембран, крім ліпідів, є білки. Білки біомембран в залежності від їхнього розташування можна розділити на дві великі групи: периферичні білки, що розташовуються на поверхні мембран, і інтегральні білки, що або глибоко занурені в гідрофобну область мембрани, або пронизують її наскрізь. Крім білків і ліпідів, в мембранах містяться протеоліпіди, тобто білки, ковалентно зв'язані з залишками ліпіду, чим вони і відрізняються від ліпопротеїнів, в яких комплекси між білком і ліпідом утворюються за рахунок нековалентних зв'язків [10].

Периферичні білки легко екстрагуються з мембрани слабкими розчинами солей і добре розчинюються у воді, вони зв'язані з поверхнею мембрани в основному електростатичними силами. Нерозчинні у воді інтегральні білки виділяють за допомогою детергентів чи органічних розчинників. Основний тип зв'язку між інтегральними білками і ліпідами мембран – це гідрофобні взаємодії. Існують також білки, що обмінюють ліпіди, які здатні здійснювати перенос фосфоліпідів між мембранами [15].

При зв'язуванні з фосфоліпідною мембраною периферичних білків відбувається зміна в їхній структурі. Можливо, часткове проникнення білків в товщу одинарного шару викликає його разупорядкування, що сприяє більш високої проникності іонів [16].

Таким чином, ліпопротеїни – це високомолекулярні водорозчинні частинки, що представляють собою комплекс білків (аполіпопротеїнів) і ліпідів, утворений нековалентними зв'язками, в яких полярні групи ліпідів разом з білком формують поверхневий гідрофільний шар, що оточує і захищає внутрішню гідрофобну ліпідну сферу від водного середовища.


1.2. Механізм залізоініційованого окиснення ліпідів


Окиснення біологічних мембран, основними компонентами яких є фосфоліпіди, що містять у своєму складі залишки ненасичених жирних кислот (НЖК), являє собою складний багатостадійний процес.

Як було раніше [2] доведено, це дійсно ланцюговий процес, який характеризується всіма рисами вільнорадикальної ланцюгової реакції: для його початку необхідна поява в системі вільних радикалів (ініціювання ланцюга), його протікання підкоряється кінетиці ланцюгових реакцій, між реакцією ініціювання споживання кисню і нагромадження гідропероксиду немає простих стехіометричних співвідношень, продукти реакції мають велику складність і інгібітори вільнорадикальних реакцій гальмують процес утворення пероксидів in vitro.

Друга найважливіша особливість процесу пероксидного окиснення ліпідів – це практично абсолютна необхідність іонів негемінового двовалентного заліза для його протікання при фізіологічних температурах. У цьому відношенні ліпідні системи відрізняються від моделей пероксидного окиснення ненасичених жирних кислот, наприклад лінолевої [2], у якій ефективні іони багатьох металів перемінної валентності. Є два шляхи пероксидного окиснення ліпідів біомембран, що принципово розрізняються на стадії ініціювання [17]. У першому випадку іони заліза – центри радикалоутворення – відновлюються ланцюгом переносу електронів ферментативно – НАДФН – специфічна система (НЗП). У неферментній системі (АЗП) відновлення заліза відбувається під дією аскорбінової кислоти й інших відновників з підходящим редокс-потенціалом. Реакції протікають за наступною схемою [1,18,19]:





Прооксидантна дія заліза опосередкована, тобто в цих реакціях залізо бере участь не у вільному, а в зв'язаному виді. З'єднуючись з визначеними функціональними групами білків, іони заліза стають пунктами радикалоутворення – центрами реакції ініціювання. У випадку НЗП ведучу роль у цьому процесі можуть грати сульфгідрильні групи цитохрома Р–450, що входять до складу його активного центра, також ініціює пероксидне окиснення комплекс АДФ-Fе2+. В АЗП на роль таких можуть претендувати функціональні групи мембранних білків, локалізовані в гідрофобній частині мембран.

Кінетика і стехіометрія обох процесів підтверджують представлення, відповідно до якого в основі розвитку цих реакцій лежить єдиний механізм – ланцюговий радикальний процес. Основні реакції, зв'язані з пероксидним окисненням ліпідів (ПОЛ) у біологічних мембранах, наступні [2,17]:

Ініціювання ланцюга:



Продовження ланцюга:


Розгалуження ланцюга:


Обрив ланцюга:



Таким чином, пероксидне окиснення ліпідів являє собою типовий ланцюговий процес з виродженим розгалуженням. У живій клітці матеріальним механізмом процесу біологічного окиснення є дихальний ланцюг – система транспорту електронів від відновленого органічного субстрату до кисню. Компоненти дихального ланцюга (близько 40) локалізовані у внутрішній мембрані мітохондрій. Спеціалізовані білки (залізо-сірчані, гемовмісні), у яких іони металів з перемінною валентністю, убіхінони, флавіни виконують роль переносників електронів:



Активні форми кисню ( ), що виникли в ході цього процесу в силу можливого “витоку” із системи транспорту електронів можуть ініціювати неферментативне пероксидне окиснення ліпідів [1]. Вирішальну роль в його регуляції в мембранах грають іони заліза [20]. Реагуючи з гідропероксидами, двовалентне залізо різко прискорює процес ланцюгового окиснення ліпідів, розгалужуючи ланцюг. Але, взаємодіючи з вільними радикалами, що ведуть ланцюг, те ж саме двовалентне залізо інгібує реакції ланцюгового окиснення, діючи як антиоксидант.

Що ж визначає співвідношення між цими двома реакціями заліза? Наявні дані говорять про те, що воно визначається співвідношенням концентрації гідропероксиду і заліза в системі. Очевидно, двовалентне залізо набагато швидше реагує з гідропероксидами, чим з вільними радикалами. Спочатку залізо розкладає всі гідропероксиди, а вже потім, якщо воно в надлишку, вступає в реакцію з радикалами.

При окисненні ліпідної фази біомембран велике значення має місце взаємодії гідропероксидів ліпідів з іонами двовалентного заліза і доля вільних радикалів, що утворюються в цій реакції [21]. Деталі даного процесу не вивчені. Припускають, що проникнення іонів Fe2+ (де, зважаючи на все, йде ланцюгова реакція окиснення НЖК фосфоліпідів) малоймовірно. Скоріше відбувається “виринання” гідропероксидної групи на поверхню ліпідного шару і зворотне занурення вільного радикала, що утворився в реакції з залізом, в товщу ліпідної фази.

Було встановлено [17], що склад ліпідів і швидкість їхніх окисних перетворень взаємозалежні. Зміна складу ліпідів мембран спричиняє зміну мікров'язкості ліпідного компонента, ліпід-білкових взаємодій і умов для структурних переходів у мембранах. Збільшення антиоксидантної можливості призводить до переходу ліпідів мембран у більш “рідкий” стан, у той час як зниження антиоксидантної активності робить ліпідну фазу більш в'язкою. Жирнокислотні ланцюги з гідрофільними кисневмісними угрупуваннями, що проникли в них, будуть виштовхуватися з гідрофобного оточення і наближатися або входити в контакт із зовнішньою водною фазою. Це призводить до розпушення мембрани, до появи в них гідрофільних “пір” [22]. Ці процеси прискорюють подальше пероксидне окиснення фосфоліпідів у біомембранах.


1.3. Антиоксидантний захист біологічних об'єктів


1.3.1 Регуляторні системи пероксидного окиснення ліпідів

Біологічна значимість того або іншого процесу в живих клітках стає загальновизнаною звичайно після того, як виявляються спеціальні ферментативні системи, що регулюють даний процес.

У клітці існує кілька систем [17], що змінюють швидкість окиснення ліпідів і які можна розглянути як регуляторні. Ці системи можна розбити на чотири групи. Система I, відповідальна за строго визначену структурну організацію ліпідів і яка впливає таким чином на швидкість реакції ініціювання, продовження й обриву ланцюга. Ця система відповідає за доступність залишків НЖК фосфоліпідів мембран до дії кисню, чим щільніше упаковка НЖК в фосфоліпідах мембран, тим менше до них доступ кисню, тим нижче швидкість зародження вільних радикалів. Будь-які агенти, що порушують упаковку НЖК, прискорюють окиснення ліпідів. Фактори, що підтримують структуру ліпідів мембран, гальмують окиснення. При моделюванні ПОЛ у мембранах in vitro порушується структурованість ліпідного подвійного шару. Тому кількісні характеристики, отримані на таких модельних системах, можуть бути з визначеною обережністю перенесені на окиснення ліпідів in vivo, структурованість яких впливає на швидкість їхнього окиснення (структурне інгібування).

Система II. Ферменти, що відповідають за утворення і загибель активних форм кисню (супероксиддисмутаза) і вільних радикалів, що ініціюють окиснення, і ферменти, що беруть участь у розпаду пероксидів без утворення вільних радикалів з них (каталаза, глутатионпероксидаза) [23,24].

Система III, що регулює обмін фосфоліпідів мембран і впливає на швидкість окиснення шляхом зміни складу НЖК фосфоліпідів, співвідношень ліпід/білок, фосфоліпід/холестерин і т.д.

Система IV: низькомолекулярні речовини, що виконують роль ініціаторів, каталізаторів, інгібіторів і т.п. і які впливають на стадію розгалуження й обриву ланцюга.

Ендогенна система антиоксидантного захисту містить у собі [2]:

Антиоксиданти фенольного типу: вітамін Е, пироксин, стероїдні гормони; мікроелемент селен;

SH-вмісні низько– і високомолекулярні сполуки, що розкладають пероксиди за молекулярним механізмом;

Антиоксиданти – комплексони; моно-, ді-, трикарбонові кислоти й інші аніони, що зв'язують залізоцерулоплазмін, феррітин.

На думку ряду авторів [24], здатністю безпосередньо реагувати з RO2 ліпідів володіють тільки природні антиоксиданти, їхній вплив на швидкість окиснення значно перевищує ефективність впливу синтетичних інгібіторів. Це визначає особливу роль природних АО в регуляції процесів ПОЛ.


1.3.2 Особливості дії природних антиоксидантів

Ряд експериментальних даних [24,25] свідчить про те, що недостача в організмі тих або інших природних АО призводить до інтенсифікації окисних процесів в ліпідах і до появи в них продуктів окиснення в кількостях, великих чим у нормі.

До природних антиоксидантів або біоантиоксидантів відносяться речовини рослинного або тваринного походження, що гальмують у модельних реакціях розвиток процесів окиснення. Біоантиоксиданти клітки складаються з екзогенних, що доставляються з їжею, і ендогенних АО, що надходять у клітку гуморальним шляхом або синтезуються в ній.

В літературі широко обговорюється питання про внесок різних компонентів ліпідів в їхню антиоксидантну активність (АОА). Однак у цьому питанні не існує єдиної точки зору. Одні дослідники зв'язують АОА ліпідів із присутністю в них однієї індивідуальної речовини (наприклад, токоферола або убіхінона) [26]. Інші вважають, що активність ліпідів визначається сукупністю властивостей різних компонентів, зміна в складі яких виражається в зміні властивостей ліпідів взагалі [10]. Треті думають, що АОА ліпідів залежить від антиоксидантних властивостей природних антиоксидантів, їхньої кількості, від можливого взаємного впливу один на одного, від взаємодії з речовинами, що самі не є АО, але збільшують або зменшують активність останніх [17].

Загальновідомо, що сутність процесу інгібованого окиснення полягає в заміні активних у реакції передачі ланцюга радикалів субстрату, що окисляється, на значно менш активні радикали , що надалі в залежності від співвідношення концентрацій реагентів і відповідних параметрів швидкостей реакцій гинуть у реакціях обриву при взаємодії з радикалами або або вступають у (побічні) реакції продовження ланцюга. Загальноприйнята модель інгібованого окиснення включає наступні реакції [2,27]:


(7),(-7)

(8)

(9)

(10)

(11)

(12)


Ослаблення антиоксидантної дії інгібіторів може бути пояснено протіканням в окисній системі побічних реакцій за участю інгібітора та його радикалів. Такими реакціями можуть бути: реакція взаємодії радикала інгібітора з молекулою вуглеводню (10), з молекулою гідропероксиду (реакція (7)), реакція інгібітора з гідропероксидом (реакція (11)), або киснем (реакція (12)). Швидкість цих реакцій суттєво залежить від будови антиоксиданта й умов окиснення. В першу чергу цікаві властивості інгібіторів в умовах, близьких до фізіологічних: невисока температура окиснення (37˚С), мала глибина перетворення, високий ступінь ненасиченості субстрату. В цих умовах реакцією (12) можна знехтувати за рахунок низької температури окиснення.

В умовах малої глибини окиснення, коли концентрація гідропероксидів у субстраті мала, можна знехтувати реакціями (-7) і (11).

Співвідношення швидкостей реакцій, що зменшують ефективну дію антиоксидантів, може змінюватися в залежності від концентрації вільних радикалів, тому що при збільшенні швидкості ініціювання (Wi) швидкість реакцій (8) і (9) зростає квадратично, а реакція (10) – лінійно. Таким чином, при збільшенні Wi в системі внесок реакції продовження ланцюга радикалами антиоксидантів у загальну швидкість окиснення зменшується, тобто зростає ефективність АО. У роботі [27] розглянута розширена кінетична схема окиснення вуглеводнів і отримані залежності, що підтверджують збільшення ефективності АО при підвищенні концентрації вільних радикалів у системі. Цим пояснюється той факт, що найбільшу ефективність природні АО виявляють у моделях окиснення високоненасичених жирних кислот.

Максимальний ефект гальмування окиснення природними АО в модельних системах може бути отриманий при окисненні високоненасичених субстратів з малим вмістом пероксиду і при низьких температурах. Саме такі умови властиві окисненню ліпідів у біомембранах, тобто фізіологічні умови є оптимальними для прояву антиоксидантної дії природних АО. Високі значення антирадикальної активності природних АО лежать в основі різкої зміни швидкості ПОЛ, що забезпечує високу ефективність регуляції навіть при незначній зміні їхньої концентрації.

У деяких випадках мала кількість природних АО може бути доповнена синтетичними інгібіторами, які можна використати для направленої зміни АОА ліпідів і, очевидно, для впливу на перебіг тих захворювань, для яких зміна антиоксидантної активності ліпідів є суттєвим чинником.


1.3.3 Гальмування процесів окиснення інгібіторами фенольного типу

Синтетичні інгібітори, що мають у своєму складі кілька функціональних груп, можуть брати участь у реакціях різного типу, що призводить до гальмування окиснення. Таким чином, з погляду механізму дії [28], інгібітори окиснення можна розділити на шість груп:

I. Інгібітори, що обривають ланцюг за реакцією з пероксидними радикалами. Такими інгібіторами є ароматичні сполуки з порівняно слабкими О-Н і N–H зв'язками (феноли, нафтоли, ароматичні аміни, діаміни).

II. Інгібітори, що обривають ланцюг за реакцією з алкільними радикалами. До них відносяться сполуки: хінони, імінохінони, метиленхінони, стабільні нітроксильні радикали, молекулярний иод.

III. Інгібітори, що швидко реагують з гідропероксидами без утворення вільних радикалів: сульфіди, фосфіти, арсеніти і т.д., а також тіосульфати і карбамати металів, різноманітні комплекси металів.

IV. Інгібітори-дезактиватори металів. Каталізоване окиснення сполуками металів перемінної валентності вдається сповільнити, вводячи комплексоутворювач, що утворює з металом неактивний комплекс стосовно гідропероксиду. До таких інгібіторів відносяться діаміни, гідроксікислоти й інші біфункціональні сполуки.

V. Інгібітори комбінованої дії. Часто в молекулі інгібітору присутні дві або кілька різних функціональних груп (-ОН, –NH2, =S, –SH та ін.), кожна з яких вступає паралельно у відповідну реакцію.

VI. Синергісти – це речовини, що підсилюють дію інгібіторів. Синергісти вводять з будь-яким типовим інгібітором у суміші. Для фенолів синергістами є органічні кислоти (лимонна, аскорбінова, щавелева).

Серед інгібіторів рідиннофазного окиснення органічних сполук центральне місце займають феноли. Саме гідроксильна група, яка приєднана до ароматичного кільця молекули, забезпечує здатність фенолів гальмувати окиснення за рахунок взаємодії їх з пероксидними радикалами субстрату, що окислюється:



Аргументами на користь цієї елементарної реакції є реєстрація методом ЕПР радикалів, що утворюються з інгібітору, наявність ізотопного ефекту з дейтерованими фенолами, відсутність інгібуючої активності простих і складних ефірів фенолів [29].

Активність фенолу в реакції з пероксидним радикалом залежить від двох факторів: міцності О-Н зв'язку (DO–H) і наявності об'ємних замісників в орто-положенні, що створюють в елементарному акті стеричні перешкоди. З одного боку, збільшення об'єму о–алкільних замісників знижує міцність ОН-зв'язку, оскільки ці замісники викликають порушення компланарності гідроксильної групи з площиною ароматичного кільця. Це повинно призводити до росту активності фенолів у реакціях радикального заміщення за участю атома водню гідроксильної групи. З іншої сторони виникають стеричні перешкоди для таких реакцій. Така подвійність приводить до того, що найбільше в реакціях радикального заміщення є феноли з проміжним о–алкільним заміщенням.

Необхідно відзначити, що електроннодонорні замісники збільшують антиоксидантну активність фенолів, а електронноакцепторні – її знижують.

В молекулі PhOH вразливий О-Н зв'язок, що легко атакується пероксидним радикалом. Висока реакційна здатність фенолів пояснюється в основному невисокими значеннями міцності О-Н зв'язків.

Феноли інтенсивно обривають ланцюг за реакцією з у концентраціях, що на 4–5 порядків менше, ніж концентрація вуглеводню, що окисляється. Цьому відповідає різниця в k2 і k7 на кілька порядків. Таке велике розходження не зв'язане лише з міцністю зв'язків С-Н у вуглеводнях і О-Н у фенолах, а викликано різними активаційними бар'єрами цих реакцій. Як показано в роботі [28], велике розходження в енергіях активацій реакцій 2 і 7 викликано триплетним відштовхуванням і внеском незв’язуючої орбіталі Y…...OOR у створенні активаційного бар'єра в реакції типу Чим міцніше зв'язок Y–OOR, тим більше енергія незв’язуючої орбіталі і вище її внесок триплетного відштовхування, що складає 27,6 кдж/моль, а у випадку фенолів він близький до нуля, тому що зв'язок RO–OAr дуже слабкий. Саме тому феноли володіють високою реакційною здатністю стосовно пероксидних і алкоксильних радикалів.

Крім того, реакції з фенолом, мабуть, передує утворення водневого зв'язку:



Вимірювана на досвіді константа швидкості цієї реакції k7 дорівнює добуткові К·k.

Час життя комплексу трохи більший, ніж час існування клітинної пари , що, видимо, позначається на константі швидкості реакції 2. Коли в розчині присутні полярні молекули, що утворюють водневий зв'язок з фенолом, це, природно, сповільнює реакцію і знижує ефективну константу швидкості реакції k7.

Аналіз значень k7 показує, що величина цієї константи слабко залежить від природи пероксирадикалів і визначається, в основному, структурою інгібітору [13,15,30]. Характер замісників, їхнє положення в ароматичному кільці інгібітору з однієї сторони впливають на міцність О-Н зв'язку в молекулах інгібітору, а з іншої на активність радикалів, що утворюються з нього .

Феноксильні радикали багатьох фенолів порівняно стійкі через делокалізацію вільного гетероатома з π-електронами ароматичного кільця, що дає можливість вивчати їхні властивості і визначати будову продуктів. При великих концентраціях радикалів

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: