Xreferat.com » Рефераты по химии » Гальмування залізоініційованого окиснення фосфоліпідів

Гальмування залізоініційованого окиснення фосфоліпідів

в системі з продуктами перетворення є, головним чином, сполука ROOIn (реакція 8).

В умовах інгібованого окиснення з реакцією 8 конкурує реакція бімолекулярної загибелі (реакція 9). В залежності від співвідношення []/[] і структури феноксила може переважати той або інший шлях. Можлива димеризація феноксильних радикалів за положеннями 2, 4, 6 ароматичного кільця, яка є зворотньою і не призводить до утворення стабільних продуктів. Основний шлях їх зворотньої бімолекулярної загибелі при наявності в феноксилі слабко зв'язаних атомів воднюдиспропорціонування з утворенням метиленхінона і регенерацією вихідного фенолу [30].

Механізм дії інгібіторів досить складний і включає крім реакції обриву ланцюга ряд інших елементарних реакцій за участю молекул і радикалів інгібітору.

Оскільки феноли – відновники, а обрив ланцюга на інгібіторі – реакція окиснення, той будь-який інший окисник, що знаходиться в системі, буде реагувати з молекулою інгібітору. Такими окисниками в системі завжди є гідропероксид і молекулярний кисень. Якщо в результаті реакції інгібітору з цими речовинами утворюються тільки молекулярні продукти, то відбувається додаткова витрата інгібітору, що знижує його активність. Якщо ж у результаті реакції утворюються вільні радикали, то реакція служить додатковим джерелом ініціювання.

Активність різних фенольних сполук як вільнорадикальних АО досліджувалася на великій кількості систем, включаючи ліпіди в білку, емульговані ліпіди й інші складні харчові матеріали. В жировмісних системах, таких як емульсії, АО можуть розподілятися між гідрофобною ліпідною фазою, гідрофільною водною фазою і міжфазним середовищем. Ці системи відносять до гетерофазних, тому що ліпіди утворюють різні дискретні середовища, в залежності від їхніх фізичних властивостей, через несумісність з водними системами.

Ліпофільний характер АО, обумовлений його розподілом між фазами, розрізняється в полярності. Одною важливою рушійною силою для розподілу є енергія віддалення утримуваної водної оболонки, що утворюється навколо АО у водній фазі.

Сили взаємодії між молекулами, що є результатом притягання між різними функціональними групами, можуть призвести до різного характеру розподілу. З одного боку, загальний склад дискретних фаз може викликати розходження в полярностях, що так само впливає на характер розподілу АО [31].

Розходження в ефективності антиоксидантів у дискретних ліпідних системах можна віднести до різної розчинності АО в різних фазах колоїдних харчових систем [32,33].

Активність зростає при наявності притягання заряджених частинок і знижується при відштовхуванні ліпідної поверхні і гідрофільних АО [7,34].

На підставі розходжень антиоксидантної активності було припущено, що міжфазний розподіл антиоксидантів – важлива фізико-хімічна властивість, що може значно впливати на їхню активність, і значний вплив робить константа розподілу сполук на доступ до радикалів у ліпофільній фазі, а не прямий розгляд швидкостей захвату радикалів [34].

В деяких дослідженнях показано [32], що відносна активність АО може змінюватися, якщо порівнювати системи з розходженнями в розподілі ліпідної фази. Повідомили, що гідрофільні антиоксиданти менш ефективні в м/в (полярних) емульсіях і мембранних системах, чим гідрофобні. Антиоксидантний потенціал сполук різний при різних способах окиснення або, для того самого досліду, при різній полярності середовища, оскільки взаємодія АО з іншими сполуками відіграє важливу роль в активності. Спостерігали протилежні результати, коли та сама модельна сполука є сильним АО в одному методі і прооксидантом в іншому. Це явище, назване “полярним парадоксом”, описано в роботі [32], гідрофільні АО більш ефективні в масі олії, тоді як ліпофільні мають велику активність в емульсіях.

Загальна тенденція така, що поліпшена стабілізація феноксильного радикала – бажана, але ліпофільна природа молекул і спорідненість АО до ліпідів може бути визначальним [35].

Оскільки вважається, що окиснення ліпідів відбувається в середовищі міцели або на поверхні ліпіду, необхідні систематичні дослідження розподілу АО в ліпідвмісних гетерофазних системах.

1.4. Методи дослідження біологічного окиснення


Для дослідження процесів пероксидного окиснення ліпідів в біологічних системах використовують вільнорадикальні інтермедіати ПОЛ (головним чином алкильні та алкилперекисні вільні радикали), продукти першого єтапу ланцюга окиснення ліпідів – їх гідропероксиди; проміжні, чи вторинні сполуки, які утворюються в результаті розпаду гідропероксидів, та кінцеві продукти ПОЛ [27]:

Труднощі аналізу продуктів ПОЛ визначаються наступними причинами:

1 – в кожний момент часу вміст дієнових коньюгатів та ліпідних пероксидів є стаціонарна концентрація сполук, результат двох одночасно протікаючих процесів: утворення та розпаду, тобто підвищення вмісту ліпідних пероксидів може бути як результат збільшення швидкості їх утворення, так і навпаки – зменьшення швидкості розпаду;

2 – в добуванні біологічного матеріалу та готуванні його для аналізу стаціонарна концентрація пероксидів повинна залишатися постійною. Для запобігання накопичення пероксидів використовують антиоксиданти: токоферол, ЕДТА, а також проводять усі процедури виділення в безкисневих умовах.

Оскільки первинними молекулярними продуктами ПОЛ є гідропероксиди та діалкилпероксиди, то в основі більшості існуючих методів дослідження процесів окиснення полягає визначення вмісту гідропероксидів ліпідів реакцією відновлення їми різних барвників або іонів І- (йодометрія) [2]. В основі різноманітних модифікацій іодометричного метода лежить визначення вільного іоду, який утворюється в результаті стехіометричного відновлення пероксидних груп йодид-іоном. Недоліком цього методу є те, що крім ліпідних пероксидів в окиснювальній системі можуть утворюватись пероксиди інших класів.

Пероксиди ліпідів є достатньо нестійкими речовинами, які легко підлягають гомолітичному розпаду. Тому результати кількісного аналізу гідропероксидів відображають лише стаціонарні концентрації цих продуктів в ліпідних системах [27]. Більш стійкими є вторинні продукти ПОЛ. Особливий інтерес при цьому представляють спектральні методи (УФ-спектрофотометрія), які широко використовують при вивченні нестійких проміжних продуктів. Застосування спектрофотометричного методу обмежено тим, що в короткохвильовій області спектру суттєво поглинання ізольованих подвійних зв’язків, тобто його можна розглядати як приблизний напівкількісний.

Подальше перетворення утворених продуктів призводить до утворення малонового діальдегіду [2,27], які визначають за кольоровою реакцією з тіобарбітуровою кислотою. ТБК-тест дуже зручний для дослідженя швидкості ПОЛ в ізольованих системах. В роботі [36] проводили оцінку АОА плазми крові та фармакологічних препаратів за накопиченням ТБК-активних продуктів з використанням як модельної системи дисперсії жовточних ліпопротеїнів. В цей час найбільш чутливим методом виявлення вільнорадикальних інтермедіатів є метод, що оснований на вимірюванні інтенсивності хемілюмінесценції електронно-збуджених продуктів, які утворюються за реакцією рекомбінації ліпідних радикалів. Проте хемілюмінесцентний (ХЛ) метод дозволяє виявляти не самі радикали, а ті молекулярні продукти їх рекомбінації, що виявляються у збудженому стані, тобто ХЛ є непрямим методом регістрації ліпідних радикалів.

ХЛ свідчить про швидкість рекомбінації алкілпероксидних радикалів у зразку. Ця особливість метода може бути використана для дослідження процесів ПОЛ, які швидко розвиваються. Другою важливою перевагою цього метода є його висока чутливість (10-10М) [27].

Недолік ХЛ метода полягає у неможливості контролювати фізико-хімічні властивості ліпідів, що призводить до зниження відтворюваності результатів ХЛ досліджень.

В якості модельної системи часто використовують дисперсію жовточних ліпопротеїнів (ЖЛП). Її готують різними способами: екстракцією хлороформно-метанольною сумішшю [2]; шляхом суспензування ЯЖ в фосфатному буфері [37] або в дистильованій воді [37]. В роботах при окисненні ЖЛП використовують буфери – трис-HCl [2], фосфатний в присутності солей NaCl [38] чи KCl [39], які забеспечують фізіологічне рН = 7,4. Концентрація заліза змінюється в інтервалі 10-4 - 2•10-2 М.

Для дослідження кінетики окиснення вуглеводнів крім ХЛ широко використовують газоволюмометричний метод. Відомості про використання газометричного метода в літературі є лише для таких модельних систем як метилолеат [40], олеїнова кислота, етилбензол, але не дисперсія ЖЛП. Оскільки ліпосоми ЯЖ є найближчим аналогом біомембран, дослідження можливості їх використання в якості субстрата окиснення на газоволюмометричній установці є актуальним.

2. Експериментальна частина


2.1.1 Газоволюмометричний метод

Одним із простих і розповсюджених методів вивчення кінетики рідиннофазних реакцій окиснення органічних речовин є метод вимірювання кількості поглиненого кисню. Газоволюмометричний метод дозволяє вимірювати швидкість окиснення з великим ступенем точності при малих глибинах перетворення, коли впливом продуктів окиснення на кінетику реакції можна знехтувати.

Існують різні варіанти газоволюмометричних установок, загальний принцип їхньої дії полягає у вимірюванні швидкості поглинання кисню при постійному тиску. Визначення кінетичних параметрів процесу інгібованого окиснення: період індукції, константу швидкості реакції з пероксильними радикалами, коефіцієнт інгібування і ряд інших кінетичних характеристик проводили на установці для автоматичної реєстрації і запису поглинання кисню "Кулон-1" з фотоелектронним датчиком заводу інституту хімічної фізики РАН (рис.2.1).

Установка складається з реакційної судини (1), зануреної в термостатовану ячейку (2), термостатованої газової бюретки (3), електролітичної ячейки з платиновими електродами (електроліт - насичений розчин щавлевої кислоти) (4), регулятора тиску (5), заповненого ундеканом, і манометра (6), фотоелектроннного датчика (8), підсилювача датчика (9), стабілізатора струму (10). Перед початком досліду бюретка, регулятор тиску і реакційна судина з речовиною, що окиснюється, заповнюються до атмосферного тиску киснем. Для проведення окиснення реакційна судина нагрівається до певної температури за допомогою термостата, при безперервному перемішуванні, після двоххвилинного прогріву з'єднується з бюреткою і регулятором тиску. Фотоелектронний датчик через стабілізатор струму з'єднаний з електролітичною ячейкою. Під час реакції кисень з бюретки надходить у реакційну судину, при цьому тиск у системі падає, і в зв'язку з цим включається електролітична ячейка. Газ, що виділився з ячейки, підвищує тиск у термостатованому об'ємі і піднімає рівень ундекану в бюретці, у результаті чого тиск у системі вирівнюється. Швидкість просування меніска ундекана в бюретці пропорційна швидкості реакції.



Рисунок 2.1 -Схема газоволюмометричної установки: 1 - реакційна судина, 2- термостат, 3 - газова бюретка, 4 - електролітична ячейка, 5 - регулятор тиску, 6 - манометр, 7 - термостатований об'єм, 8 - фотоелектронний датчик, 9 - підсилювач датчика, 10 - стабілізатор струму.


Сила струму на електролізері складала 0.2 А. Установка дозволяє вимірювати швидкість поглинання кисню - від 10-7-10-8 моль-л-1∙с-1 і більше. Об'єм реакційної суміші дорівнює 5 мл, частота перемішування - 8-100 с-1. Вимірювання проводили в кінетичній області при тиску кисню 1 атм. і температурі 310К.


Тонкошарова хроматографія (ТШХ)


Метод ТШХ полягає в наступному [41]: на один бік невеликої скляної пластинки наносять тонкий шар сорбента. На такий шар на стартову лінію наносять проби речовин та їх сумішей, і кінець пластинки, нище стартової лінії, занурюють в систему розчинників. За мірою просування рідини по пластинці відбувається розподіл суміші речовин. Границю підйому рідини чи лінію фронту позначають, пластинку висушують і проявляють для визначення речовин у вигляді забарвлених плям. Відмічають положення плям, які відповідають досліджуваним речовинам, що знаходяться між лінією старта і лінією фронту рідини. Для цього вимірюють відстань від центра плями до стартової лінії (АБ). Потім визначають відстань від лінії фронту рідини до стартової точки (АВ). Співвідношення відстані від стартової лінії до центра плями (АБ) та відстані від стартової лінії до лінії фронту (АВ) позначається через константу Rf, яка характеризує положення речовини на хроматограмі. Таким чином, величина Rf = АБ/АВ характерна для даної сполуки на даному сорбенті і в даній системі.

В якості носія для нерухомої фази використовують силікагель, а в якості системи розчинників – хлороформ-бензол-гексан в співвідношенні 30:6:1. По закінченню пластинку з отриманими результатами проявляють парами аміаку.


2.3. Техніка безпеки


2.3.1. Правила безпечної роботи в хімічних лабораторіях

Загальна організація роботи по техніці безпеки покладена на керівників відділів. Працювати в хімічних лабораторіях дозволяється особам віком не менше 18 років, які пройшли інструктаж з ТБ.

У всіх приміщеннях лабораторії повинна бути встановлена витяжна вентиляція. Всі роботи, пов'язані з виділенням шкідливих парів або газів, повинні проводитись у витяжних шафах. Зберігання різних хімічних речовин у лабораторіях повинно відбуватись із врахуванням їх властивостей. Залишати робоче місце і нагрівальні прибори без нагляду заборонено.

В кожній лабораторній кімнаті на певному місці повинні знаходитись вогнегасник, пісок, ковдра. Всі реактиви в лабораторіях повинні зберігатись в тарі з підписом. В лабораторії повинно знаходитись не менше двох чоловік. Всі роботи в лабораторії повинні проводитись при задовільному стані електрообладнання.

2.3.2 Основні правила безпеки при роботі з їдкими речовинами

Роботу з концентрованими кислотами та лугами без захисного обладнання заборонено. Концентрована кислота повинна зберігатись у товстостінному скляному посуді ємністю не більше 1 л у витяжній шафі. Розлиті кислоти або луги необхідно миттєво засипати піском. Після уборки піска це місце нейтралізують: кислоту - лугом або содою, луг - слабким розчином оцтової кислоти. Не можна набирати концентровані кислоти та луги в пипетки ртом. При використанні хромової суміші необхідно запобігати попаданню суміші на шкіру, одяг та взуття. Заборонено зливати концентровані кислоти та луги в каналізацію, їх слід окремо збирати в посуд і після нейтралізації зливати в зливи для неорганічних речовин.

2.3.3. Основні правила безпечної роботи з електрообладнанням та електроприладами

Заборонено переносити включені прилади та ремонтувати обладнання, що знаходиться під струмом. Заборонено працювати поруч з оголеними частинами обладнання. Заборонено загромаджувати підступи до електричних приладів. У випадку припинення подачі струму всі приклади повинні бути миттєво відключені. Заборонено залишати без нагляду включені прилади. У випадку загорання проводки слід негайно вимкнути електрику та погасити вогонь за допомогою вуглекислотного вогнегасника та ковдри з асбесту.

3. Гальмування залізоініційованого окиснення фосфоліпідів


Для оцінки антиоксидантної активності сполук застосовується велика кількість методів і тестових систем [27,33]. При підборі інгібіторів для збереження продуктів харчування, що містять фосфоліпіди (рослинні олії, жири, риба, м'ясо і т.д.), а також при рішенні медичних проблем, зв'язаних з окисненням ліпідів мембран, кращою моделлю є лецитинова ліпосомна емульсія [33]і в біології в якості тестової широко використовується емульсія яєчного жовтка (ЯЖ) [36,39] – гетерогенна система, що містить мембранні структури кліток (при розведенні у фосфатному буфері фосфоліпіди ЯЖ утворюють міцели подвійного шару - ліпосоми), і яка відповідає за ліпідно-білковим складом ліпопротеїнам низкої густини плазми крові [36]. У порівнянні з гомогенатами тканин вона доступна, стабільна при збереженні і, разом з тим, відрізняється високою окиснюваністю, що дозволяє використовувати звичайні лабораторні методики й апаратуру для визначення рівня ПОЛ. Застосування складного природнього субстрату (ЯЖ) утруднює одержання надійних кінетичних даних, але дає можливість якісно оцінити АОА різних сполук.

Загальноприйнятими методами дослідження ПОЛ у даний час є [42] хемілюмінесцентний (ХЛ) і за виміром продуктів пероксидації, таких як дієнові коньюгати, малоновий діальдегид (МДА), гексаналь, пероксиди. На жаль, усі методи не досконалі, тому що мають ряд недоліків. У той же час газоволюмометричний метод вивчення радикально-ланцюгових процесів окиснення (ГВ), який широко використовується на практиці для інших систем, практично не застосовується при дослідженні ПОЛ, очевидно, через низьку чутливість стандартних газоволюмометричних установок. Заміна ртутного нуль-датчика тиску фотоелектронним або чуттєвим елементом тиску дозволили вивчати окисні процеси, що протікають зі швидкістю 10-6 – 10-8 моль • м-1 • с-1.

Окиснення проводилося в умовах близьких до фізіологічних: ~3,3% дисперсія вимороженого яєчного жовтка у фосфатному буфері (рН=7,4, 0,04М КН2РО42НРО4, 0,14М NaCl) t=37єC, [Fe2+]=5·10–3моль/л.

Вплив інкубації на окиснення ЖЛП можна простежити за кінетичними кривими поглинання кисню (рис.3.1).


Рис.3.1 – Вплив умов інкубації яєчного жовтка (1 – без виморожування, 2 – 4 – вимороженого) на процес окиснення його 9 % дисперсії в фосфатному буфері (рН = 7,4; 0,04 М KH2PO4/K2HPO4, 0,14 M NaCl) в присутності [Fe2+] = 2,5•10-3 M.

Тривалість інкубації, година: 2 – 4,5; 1,3 – 24; 4 – 48.


Видно, що для забезпечення помітної швидкості процесу необхідно попереднє (не менш доби) виморожування яєчного жовтка для руйнування природної емульсії й інкубація приготовленої з вимороженого жовтка дисперсії у фосфатному буфері протягом 24 годин.

Інкубація сприяє, ймовірно, нагромадженню деякої кількості пероксидів, що забезпечує початкове ініціювання ланцюгового процесу. Ряд дослідників для цих цілей використовують попереднє УФ – опромінення розчинів [43]. З рис.3.1 також видно, що окиснення ЖЛП йде з невеликим періодом індукції, обумовленим, очевидно, дією ендогенних АО жовтка.

Для вибору оптимальних умов окиснення ЖЛП був вивчений вплив на швидкість процесу температури (рис.3.2), концентрацій субстрату [ЯЖ] (рис.3.3) і ініціатора [Fe2+] (рис.3.4).





Рис.3.2 – Температурна залежність швидкості окиснення 9 % дисперсіі ЖЛП при [Fe2+] = 2,5•10-3 M.


При варіюванні температури було встановлено, що вище 400С швидкість окиснення помітно знижується, а при 500С поглинання кисню відсутнє. Це узгоджується з уявленнями [2] про ферментативний шлях залізоініційованого окиснення біологічних систем. Ферменти, що містяться в них, (НАДФН), що відновлюють ініціатор, інактивуються при підвищених температурах, що і призводить до зниження швидкості окиснення. Оптимальна температура, при якій спостерігається максимальна швидкість окиснення - 370С.

Концентрація субстрату окиснення (рис.3.3) складно впливає на швидкість процесу.



Рис.3.3 – Кінетичні криві поглинання кисню в процесі залізоініційованого окиснення ЯЖ в залежності від масової частки субстрата окиснення; [Fe2+] = 2,5•10-3 M, [ЯЖ], % мас.: 1 – 3,2; 2 – 4,8; 3 – 16,7; 4 – 25,0.


При вмісті в розчині ЯЖ до 1% по масі поглинання кисню не спостерігається, далі швидкість зростає і досягає максимуму при 3,2%. Подальше підвищення концентрації ЖЛП призводить до зниження окиснюваності дисперсії. Це може бути наслідком як збільшення вмісту в системі ендогенних АО, так і підвищення ролі структурного інгібувания і дифузійних процесів при окисненні. Оптимально робоче співвідношення в системі ЯЖ і буфера 1:30. Дослідження впливу парціального тиску кисню в системі на швидкість окиснення при оптимальному вмісті субстрату показала, що зміна тиску в інтервалі 700 мм рт. ст. – 1 атм., як і зміна інтенсивності перемішування, не впливають на швидкість процесу, що свідчить про протікання його в кінетичній області.

Вплив концентрації ініціатора на окиснення дисперсії представлено на рис.3.4. Двовалентне залізо, як відомо [2], виступає ініціатором процесу, але у великих концентраціях може й інгібувати ПОЛ. Отримані результати (рис.3.4) підтверджують це, а максимальна швидкість окиснення досягається при [Fe2+]=5• 10-3моль/л.


Рис.3.4 – Залежність обўєму поглиненого кисню при окисненні ЯЖ (3,2 % за масою) при 370С від концентрації ініціатора, t = 15 хв.


Окиснення емульсії яєчного жовтка в оптимальних умовах дозволило одержати в паралельних дослідах відтворені результати за значеннями швидкостей процесу і періодів індукції. Готування розчину й окиснення проводили наступним чином: попередньо виморожений протягом доби яєчний жовток (зберігається при –80С) розводили буфером у співвідношенні 1:30. Після добової інкубації дисперсії проводили окиснення. У нульовому досвіді в реактор поміщали 4,9 мл дисперсії ЯЖ, додавали 0,1 мл 0,025 М водного розчину FeSO4• 7H2O; при дослідженні АОА препаратів уводили 0,1 мл розчину інгібітору необхідної концентрації. Концентрація ініціатора в реакційній суміші була постійною 5• 10-3М.

Окиснення фосфоліпідів у даній системі протікає, як доведено в роботі [2], за вільнорадикальним механізмом. Процес має свої особливості, зв'язані насамперед з тим, що окиснення проходить на границі розділу фаз, процес гетерогенний, ініціатор – метал перемінної валентності, дисперсійне середовище – вода. Ефективність інгібітору повинна залежати від його колоїдної локалізації, розподілу між водною і масляною фазами, взаємодії з поверхнево-активними речовинами емульсії й ініціатором [32]. Незважаючи на велику кількість досліджень, присвячених вивченню антиоксидантних властивостей різних речовин у ліпідних субстратах, дотепер не отримано однозначних даних навіть про поведінку в таких системах іонола. В зв'язку з цим було проведене дослідження антиоксидантної активності типових фенольних антиоксидантів у процесі залізоініційованого окиснення емульсії яєчного жовтка. Необхідно відзначити, що ортополіфеноли, що є найбільш ефективними антиоксидантами неможливо досліджувати на даній модельній системі, тому що вони утворюють комплекси з ініціатором окиснення – двовалентним залізом, тим самим, виводячись із системи. Контроль за процесом окиснення емульсії здійснювали за поглинанням кисню. Вплив на окиснення різних фенольних антиоксидантів оцінювався при однакових концентраціях (10–3моль/л). Отримані кінетичні результати приведені на рис.3.5. Видно, що вивчені сполуки в межах помилки вимірів (±5 хв) практично не впливають на величину періоду індукції окиснення модельної емульсії, обумовленого наявністю ендогенних антиоксидантів.

Вплив уведених добавок позначається на швидкості процесу окиснення після виходу з періоду індукції, що пропорційна об’єму поглиненого кисню. Як критерій антиоксидантної дії фенолів обрана величина (V0–V)/V0, де V0 – об’єм поглиненого кисню емульсією без добавок фенолу через 20 хв після початку окиснення, V - об’єм кисню, поглиненого емульсією, що окиснюється, з добавками фенолу в той же момент часу.

Очевидно, що чим більше відношення (V0–V)/V0, тим ефективніше антиоксидант в обраних умовах гальмує процес окиснення.

З рис.3.5 видно, що феноли в різному ступені гальмують окиснення фосфоліпідів яєчного жовтка, що обумовлено будовою антиоксиданту.


Рис.3.5 – Кінетичні криві поглинання кисню при залізоініційованому окисненні ЯЖ в присутності [InH] = 1•10-3 M:

[InH] = 0

ферулової кислоти

емоксипіна

7-гідрокси – 4-метилкумарина

фенікаберана

арбідола

іонола


Зі збільшенням концентрації уведеного фенолу ступінь гальмування окисного процесу в емульсії яєчного жовтка зростає. Причому вплив концентрації фенолів різний для слабких і сильних антиоксидантів. Так для емоксипіна, що є слабким антиоксидантом (рис.3.6), зниження швидкості окиснення фосфоліпідів спостерігається тільки при досить високих концентраціях (10-3– 10-4 моль/л) і плавно змінюється з ростом концентрації. У той же час іонол (рис.3.7) гальмує процес вже при концентрації в системі 10-5–10-6 моль/л, а подальше збільшення концентрації суттєво не змінює швидкості процесу. Таке розходження в поведінці різних фенольних антиоксидантів виявляється в концентраційній залежності параметра, що характеризує ефективність фенолу у вивченій системі. Для слабких антиоксидантів (рис. 3.8) залежність (V0–V)/V0 від концентрації фенолів лінійна, а для сильних (рис.3.9) має верхню границю.

Побудова концентраційних залежностей для усіх вивчених фенолів дало можливість визначити концентрацію антиоксиданту, що викликає в однакових умовах 50%–ве зниження об’єму поглиненого кисню (С50%). В медичних дослідженнях аналогічний показник використовується для порівняння антиоксидантної активності різних лікарських препаратів за їхньою здатністю знижувати на 50% хемілюмінесценцію або вихід продуктів окиснення ліпідів.

Для трьох вивчених антиоксидантів (арбідол, іонол та емоксипін) значення С50%, визначені в даному дослідженні газоволюмометричним методом і літературні дані [6,8,9,37,43], отримані хемілюмінесцентним методом, приведені в табл.3.1. Як видно з таблиці отримані результати збігаються в межах погрішності застосовуваних методів. Цей факт свідчить на користь можливості використання запропонованої газоволюмометричної методики окиснення фосфоліпідів яєчного жовтка для тестування сполук на антиоксидантну активність.


Рис.3.6 – Окиснення дисперсії ЯЖ в присутності емоксипіна, [InH]: 1 – 0; 2 – 6,5•10-4M; 3 – 1,3•10-3M; 4 – 2 ,6•10-3M.




Рис.3.7 – Окиснення дисперсії ЯЖ в присутності іонола, [InH]: 1 – 0; 2 – 3,0·10-6М; 3 – 4,0·10-6М; 4 – 1,0·10-4М; 5 – 1,0·10-3М.


Рис.3.8 – Вплив концентрації антиоксидантів на відносне зниження обўєму поглиненого кисню при окиснені ЖЛП в присутності: 1 - іонола, 2 - арбідола.




Рис.3.9 - Вплив концентрації антиоксидантів на відносне зниження обўєму поглиненого кисню при окиснені ЖЛП в присутності: 3 – фенікаберана, 4 - 7-гідрокси – 4-метилкумарина, 5 – емоксипіна, 6 - ферулової кислоти

Таблиця 3.1

Значення С50%, визначені газоволюмометричним методом (ГВ) і методом хемілюмінесценції (ХЛ) при пероксидному окисненні ліпідів

Фенол

С50%, моль/л

Метод
1 Іонол

3,5Ч10-6

3,0Ч10-6

8,5Ч10-6

ГВ

ХЛ, ЯЖ

ХЛ,Л+I

2 Емоксипін

1,5·10-3

0,9·10-3

1,0·10-3

ГВ

ХЛ

ХЛ

3 Арбідол

1,1Ч10-5

0,9Ч10-5

0,5Ч10-5

ГВ

ХЛ

ХЛ


Концентрація фенолу, що викликає 50%–ве зниження об’єму поглиненого кисню при окисненні лецитинової емульсії, є характеристикою фенолу як антиоксиданту. Чим менше величина С50%, тим ефективніше фенол гальмує процес окиснення. В табл.3.2 приведені значення цих концентрацій для всіх вивчених фенолів. В таблиці 3.2 феноли розташовані в порядку зменшення величини С50%. Це дозволяє зробити ряд висновків щодо взаємозв'язку антиоксидантної активності фенолу в досліджуваній системі з будовою антиоксиданту:

Збільшення загального числа алкільних замісників в орто– і пара-положеннях до гідроксильної групи зменшує міцність О-Н зв'язку і підвищує ефективність сполуки як антиоксиданту. Цей висновок погодиться з класичним механізмом антиоксидантної дії фенолів, зв'язаним з обривом ланцюгів окиснення при гомолітичному розриві О-Н зв'язку.

Таблиця 3.2

Антиоксидантні властивості фенолів при залізоініційованому окисненні дисперсії ЖЛП. [ЯЖ]=3,2 % мас.; t=37°С; [Fe2+]=5Ч10-3М

Інгібітор

Назва

С50%,

моль/л

1

ферулова кислота

2,7·10-3

2



3,4–диметилфенол

2,0Ч10-3*

3



2,3–диметилфенол

2,0Ч10-3*

4



емоксипін

1,6Ч10-4

5



1,3–діоксибензол

9,0Ч10-4

6



1,4–діоксибензол

5,0Ч10-4

7


4-метил–7–гідроксикумарин

8,5Ч10-4


8


4-(2-оксистиріл)-N-бензил-піридин


6,0Ч10-4

9

2–метил–6–гідрокси бензоксазол

4,5Ч10-4

10



4–гідроксиізохінолін

4,0Ч10-4

11

2-гідрокси-3-пропеніл-бензиліденроданін

7,5·10-5

12

4-(3,5-ди-т.-бутил-4-оксистиріл)-піридин

5,0·10-5

13

арбідол (основа)

4,5·10-5

14

арбідол

1,1·10-5

15

іонол

3,5·10-6

16

фенозан-28

3,3·10-6

17

2,6-диметилфенол

2,5·10-6

18

ірганокс-1076

2,5·10-6

19

фенол-85

0,7·10-6

* - С30%


2. Найбільш ефективні феноли з орто-алкільними замісниками, причому збільшення об’єму таких замісників неоднозначно позначається на активності антиоксиданту. Обумовлено це з однієї сторони стеричними перешкодами в реакції з пероксирадикалами субстрату, що окислюється, а з іншого боку – активністю феноксильного радикала, що утворюється. Проте, в цілому, просторово-екрановані феноли більш ефективні антиоксиданти пероксидного окиснення ліпідів.

3. Введення в молекулу фенолу будь-яких електронноакцепторних замісників знижує антиокисну активність сполуки.

Аналіз отриманих даних показав, що антиоксидантна активність фенолів при окисненні ліпідів, як і в процесі гомогенного радикально-ланцюгового окиснення вуглеводнів, залежить від різних факторів, у першу чергу, від міцності ОН-зв'язку реакційного центра й активності феноксильного радикала, що залежить від можливості делокалізації електрона в подвійних зв'язках [9] і наявності об'ємних замісників в орто-положенні до гідроксогрупи.

В процесі пероксидації ліпідів ці фактори дуже важливі, але в гетерогенній системі суттєвий вплив на ефективність антиоксидантів робить, крім того, гідрофобність фенолів, що визначає їхній розподіл у системі і вміст у масляній фазі, а також адсорбція АО на її поверхні [2, 35]. Ці фактори сприяють збільшенню локальної концентрації АО в поверхневому шарі, а, отже, підсилюється інгібування ПОЛ.

Відомо, що основними складовими частинами ліпосомного подвійного шару є фосфатидилхолін (ФХ) і фосфатидилетаноламін (ФЕА). Структура подвійного шару

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: